
Outward Influence and Cascade Size Estimation
in Billion-scale Networks

H. T. Nguyen, T. P. Nguyen

Virginia Commonwealth Univ.

Richmond, VA 23220

{hungnt,trinpm}@vcu.edu

T. N. Vu

Univ. of Colorado, Boulder &

UC Denver

Boulder, CO 80309

tam.vu@colorado.edu

T. N. Dinh

Virginia Commonwealth Univ.

Richmond, VA 23220

tndinh@vcu.edu

ABSTRACT
Estimating cascade size and nodes’ in�uence is a fundamental task

in social, technological, and biological networks. Yet this task is

extremely challenging due to the sheer size and the structural he-

terogeneity of networks. We investigate a new in�uence measure,

termed outward in�uence (OI), de�ned as the (expected) number of

nodes that a subset of nodes S will activate, excluding the nodes in S .

Thus, OI equals, the de facto standard measure, in�uence spread of

S minus |S |. OI is not only more informative for nodes with small

in�uence, but also, critical in designing new e�ective sampling and

statistical estimation methods.

Based on OI, we propose SIEA/SOIEA, novel methods to esti-

mate in�uence spread/outward in�uence at scale and with rigorous
theoretical guarantees. The proposed methods are built on two novel

components 1) IICP an important sampling method for outward

in�uence; and 2) RSA, a robust mean estimation method that mi-

nimize the number of samples through analyzing variance and

range of random variables. Compared to the state-of-the art for

in�uence estimation, SIEA is Ω(log4 n) times faster in theory and

up to several orders of magnitude faster in practice. For the �rst

time, in�uence of nodes in the networks of billions of edges can

be estimated with high accuracy within a few minutes. Our com-

prehensive experiments on real-world networks also give evidence

against the popular practice of using a �xed number, e.g. 10K or

20K, of samples to compute the “ground truth” for in�uence spread.
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1 INTRODUCTION
In the past decade, a massive amount of data on human interactions

has shed light on various cascading processes from the propaga-

tion of information and in�uence [17] to the outbreak of diseases

[21]. These cascading processes can be modeled in graph theory

through the abstraction of the network as a graph G = (V ,E) and a

di�usion model that describes how the cascade proceeds into the

network from a prescribed subset of nodes. A fundamental task in

analyzing those cascades is to estimate the cascade size, also known
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S In�uence I(S) Outward Inf. Iout (S)

{u} 1 + p + 2p2 = 1.12 p + 2p2 = 0.12

{v} 1 + 2p = 1.20 2p = 0.20

{w} 1.00 0.00

Figure 1: Left: the in�uence of nodes under IC model. The in�u-
ence of all nodes are roughly the same, despite that w is much less
in�uential than u and v . Right: Outward in�uence is better at re-
�ecting the relative in�uence of the nodes.w has the least outward
in�uence, 0, while v ’s is nearly twice as that of u

as in�uence spread in social networks. This task is the foundation

of the solutions for many applications including viral marketing

[17, 28, 31, 32], estimating users’ in�uence [12, 23], optimal vaccine

allocation [30], identifying critical nodes in the network [11], and

many others. Yet this task becomes computationally challenging

in the face of the nowadays social networks that may consist of

billions of nodes and edges.

Most of the existing work in network cascades uses stochastic dif-

fusion models and estimates the in�uence spread through sampling

[8, 11, 17, 23, 29, 31]. The common practice is to use a �xed number

of samples, e.g. 10K or 20K [8, 17, 29, 31], to estimate the expected

size of the cascade, aka in�uence spread. Not only is there no single

sample size that works well for all networks of di�erent sizes and

topologies, but those approaches also do not provide any accuracy

guarantees. Recently, Lucier et al. [23] introduced INFEST, the �rst

estimation method that comes with accuracy guarantees. Unfor-

tunately, our experiments suggest that INFEST does not perform

well in practice, taking hours on networks with only few thousand

nodes. Will there be a rigorous method to estimate the cascade size in
billion-scale networks?

In this paper, we investigate e�cient estimation methods for

nodes’ in�uence under stochastic cascade models [10, 12, 17]. First,

we introduce a new in�uence measure, called outward in�uence
and de�ned as Iout (S) = I(S)− |S |, where I(S) denotes the in�uence

spread. The new measure excludes the self-in�uence artifact in

in�uence spread, making it more e�ective in comparing relative
in�uence of nodes. As shown in Fig. 1, the in�uence spread of the

nodes are roughly the same, 1. In contrast, the outward in�uence of

nodes u,v andw are 0.12, 0.20, and 0.00, respectively. Those values

correctly re�ect the intuition that w is the least in�uential nodes

and v is nearly twice as in�uential as u.

More importantly, the outward in�uence measure inspires novel

methods, termed SIEA/SOIEA, to estimate in�uence spread/outward

in�uence at scale and with rigorous theoretical guarantees. Both

SOIEA and SIEA guarantee arbitrary small relative error with high
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probability within an O(n) observed in�uence. The proposed met-

hods are built on two novel components 1) IICP an important

sampling method for outward in�uence; and 2) RSA, a robust mean

estimation method that minimize the number of samples through

analyzing variance and range of random variables. IICP focuses

only on non-trivial cascades in which at least one node outside the

seed set must be activated. As each IICP generates cascades of size

at least two and outward in�uence of at least one, it leads to smaller

variance and much faster convergence to the mean value. Under the

well-known independent cascade model [17], SOIEA is Ω(log4 n)
times faster than the state-of-the-art INFEST [23] in theory and is

four to �ve orders of magnitude faster than both INFEST and the

naive Monte-Carlo sampling. For other stochastic models, such as

continuous-time di�usion model [12], LT model [17], SI, SIR, and

variations [10], RSA can be applied directly to estimate the in�u-

ence spread, given a Monte-Carlo sampling procedure, or, better,

with an extension of IICP to the model.

Our contributions are summarized as follows.

• We introduce a new in�uence measure, called Outward
In�uence which is more e�ective in di�erentiating nodes’

in�uence. We investigate the characteristics of this new

measure including non-monotonicity, submodularity, and

#P-hardness of computation.

• Two fully polynomial time randomized approximation

schemes (FPRAS) SIEA and SOIEA to provide (ϵ,δ )-approximate

for in�uence spread and outward in�uence with only an

O(n) observed in�uence in total. Particularly, SOIEA, our

algorithm to estimate in�uence spread, is Ω(log4 n) times
faster than the state-of-the-art INFEST [23] in theory and

is four to �ve orders of magnitude faster than both INFEST
and the naive Monte-Carlo sampling.

• The robust mean estimation algorithm, termed RSA, a buil-

ding block of SIEA, can be used to estimate in�uence spread

under other stochastic di�usion models, or, in general, mean

of bounded random variables of unknown distribution.RSA
will be our favorite statistical algorithm moving forwards.

• We perform comprehensive experiments on both real-world

and synthesis networks with size up to 65 million nodes

and 1.8 billion edges. Our experiments indicate the superior

of our algorithms in terms of both accuracy and running

time in comparison to the naive Monte-Carlo and the state-

of-the-art methods. The results also give evidence against
the practice of using a �xed number of samples to estimate

the cascade size. For example, using 10000 samples to esti-

mate the in�uence will deviate up to 240% from the ground

truth in a Twitter subnetwork. In contrast, our algorithm

can provide (pseudo) ground truth with guaranteed small

(relative) error (e.g. 0.5%). Thus it is a more concrete ben-

chmark tool for research on network cascades.

Organization. The rest of the paper is organized as follows: In

Section 2, we introduce the di�usion model and the de�nition of

outward in�uence with its properties. We propose an FPRAS for

outward in�uence estimation in Section 3. Applications in in�uence

estimation are presented in Section 5 which is followed by the

experimental results in Section 6 and conclusion in Section 8. We

cover the most recent related work in Section 7.

2 DEFINITIONS AND PROPERTIES
In this section, we will introduce stochastic di�usion models, the

new measure of Outward In�uence, and showcase its properties

under the popular Independent Cascade (IC) model [17].

Di�usion model. Consider a network abstracted as a graph

G = (V ,E), where V and E are the sets of nodes and edges, re-

spectively. For example, in a social network, V and E correspond

to the set of users and their social relationships, respectively. As-

sume that there is a cascade starting from a subset of nodes S ⊆ V ,

called seed set. How the cascade progress is described by a di�u-

sion model (aka cascade model)M that dictates how nodes gets

activated/in�uenced. In a stochastic di�usion model, the cascade is

dictated by a random vector θ in a sample space Ωθ . Describing the

di�usion model is then equivalent to specifying the distribution P
of θ .

Let rS (θ ) be the size of the cascade, the number of activated

nodes in the end. The in�uence spread of S , denoted by I(S), under

di�usion modelM is the expected size of the cascade, i.e.,

I(S) =

{∑
θ ∈Ωθ rθ (S) Pr[θ ] for discrete Ωθ ,∫
θ ∈Ωθ

rθ (S)dP(θ ) for continuous Ωθ
(1)

For example, we describe below the unknown vector θ and their

distribution for the most popular di�usion models.

• Information di�usion models, e.g. Independent Cascade

(IC), Linear Threshold (LT), the general triggering mo-

del [17]: θ ∈ {0, 1} |E | , and ∀(u,v) ∈ E,θ(u,v) is a Ber-

nouli random variable that indicates whether u activa-

tes/in�uencesv . That is for givenw(u,v) ∈ (0, 1), θ (u,v) =
1 ifu activatesv with a probabilityw(u,v) and 0, otherwise.

• Epidemic cascading models, e.g., Susceptible-Infected (SI)

[10, 26] and its variations: θ ∈ N |E | , and ∀(u,v) ∈ E,θ(u,v)
is a random variable following a geometric distribution.

θ(u,v) indicates how long it takes u to activates v after u is

activated.

• Continuous-time models [12]: θ ∈ R |E | , and θ(u,v) is a

continuous random variable with density function πu,v (t).
θ(u,v) also indicates the transmission times (time until u
activatesv) like that in the SI model, however, the transmis-

sions time on di�erent edges follow di�erent distributions.

Outward In�uence. We introduce the notion of Outward Influ-
ence which captures the in�uence of a subset of nodes towards the

rest of the network. Outward in�uence excludes the self-in�uence

of the seed nodes from the measure.

Definition 1 (Outward Influence). Given a graph G = (V ,E),
a set S ⊆ V and a di�usion modelM, the Outward In�uence of S ,
denoted by Iout (S), is

Iout (S) = I(S) − |S | (2)

Thus, in�uence and outward in�uence of a seed set S di�er

exactly by the number of nodes in S .

In�uence Spread/Outward In�uence Estimations. A funde-

mental task in network science is to estimate the in�uence of a

given seed set S . Since the exact computation is #P-hard (Subsection

2.2), we aim for estimation with bounded error.



Outward Influence and Cascade Size Estimation
in Billion-scale Networks SIGMETRICS ’17, June 05-09, 2017, Urbana-Champaign, IL, USA

Definition 2 (Influence Spread Estimation). Given a
graph G and a set S ⊆ V , the problem asks for an (ϵ,δ )-estimate ˆI(S)
of in�uence spread I(S), i.e.,

Pr[(1 − ϵ)I(S) ≤ ˆI(S) ≤ (1 + ϵ)I(S)] ≥ 1 − δ . (3)

The outward in�uence estimation problem is stated similarly:

Definition 3 (Outward Influence Estimation). Given
a graph G and a set S ⊆ V , the problem asks for an (ϵ,δ )-estimate
ˆIout (S) of in�uence spread Iout (S), i.e.,

Pr[(1 − ϵ)Iout (S) ≤ ˆIout (S) ≤ (1 + ϵ)Iout (S)] ≥ 1 − δ . (4)

A common approach for estimation is through generating inde-

pendent Monte-Carlo samples and taking the average. However,

one faces two major challenges:

• How to achieve a minimum number samples to get an

(ϵ,δ )-approximate?

• How to e�ectively generate samples with small variance,

and, thus, reduce the number of samples?

For simplicity, we focus on the well-known Independent Cascade
(IC) model and provide the extension of our approaches to other

cascade models in Subsection 5.3.

2.1 Independent Cascade (IC) Model
Given a probabilistic graph G = (V ,E) in which each edge (u,v) ∈
E is associated with a number w(u,v) ∈ (0, 1). w(u,v) indicates

the probability that node u will successfully activate v once u is

activated. In practice, the probability w(u,v) can be mined from

interaction frequency [17, 32] or learned from action logs [13].

Cascading Process. The cascade starts from a subset of nodes

S ⊆ V , called seed set. The cascade happens in discrete rounds

t = 0, 1, ...|V |. At round 0, only nodes in S are active and the others

are inactive. When a node u becomes active, it has a single chance

to activate (aka in�uence) each neighbor v of u with probability

w(u,v). An active node remains active till the end of the cascade

process. It stops when no more nodes get activated.

Sample Graph. Associate with each edge (u,v) ∈ E a biased

coin that lands heads with probability w(u,v) and tails with proba-

bility 1−w(u,v). Deciding the outcome whenu attempts to activate

v is then equivalent to the outcome of �ipping the coin. If the coin

landed heads, the activation attemp succeeds and we call (u,v) a

live-edge. Since all the activation on the edges are independent in

the IC model, it does not matter when we �ip the coin. That is we

can �ip all the coins associated with the edges (u,v) at the same

time instead of waiting until node u becomes active. We call the

graph д that contains the nodes V and all the live-edges a sample
graph of G.

Note that the model parameter θ for the IC is a random vector

indicating the states of the edges, i.e. live-edge or not. In other

words, Ωθ corresponds to the space of all possible sample graphs

of G, denoted by ΩG .

Probabilistic Space. The graph G can be seen as a generative

model. The set of all sample graphs generated from G together

with their probabilities de�ne a probabilistic space ΩG . Recall that

each sample graph д ∈ ΩG can be generated by �ipping coins

on all the edges to determine whether or not the edge is live or

appears in д. Each edge (u,v) will be present in the a sample graph

with probability w(u,v). Thus, the probability that a sample graph

д = (V ,E ′ ⊆ E) is generated from G is

Pr[д ∼ G] =
∏

(u,v)∈E′
w(u,v)

∏
(u,v)∈E\E′

(1 −w(u,v)). (5)

In�uence Spread and Outward In�uence. In a sample graph

д ∈ ΩG , let rд(S) be the set of nodes reachable from S . The in�uence
spread in Eq. 1 is rewritten,

I(S) =
∑
д∈ΩG

|rд(S)| Pr[д ∼ G], (6)

and the outward in�uence is de�ned accordingly to Eq. 2,

Iout (S) = I(S) − |S | (7)

2.2 Outward In�uence under IC
We show the properties of outward in�uence under the IC model.

Better In�uence Discrepancy. As illustrated through Fig. 1,

the elimination of the nominal constant |S | helps to di�erentiate

the “actual in�uence” of the seed nodes to the other nodes in the

network. In the extreme case when p = o(1), the ratio between the

in�uence spread ofu andv is
1+p+2p2
1+p+2p ≈ 1, suggestingu andv have

the same in�uence. However, outward in�uence can capture the

fact that v can in�uence roughly twice the number of nodes than

u, since s
Iout (u)
Iout (v)

=
p+2p2
2p ≈ 1/2.

Non-monotonicity. Outward in�uence as a function of seed

set S is non-monotone. This is di�erent from the in�uence spread.

In Figure 1, Iout ({u}) = 0.12 < Iout ({u,v}) = 0.2, however,

Iout ({u}) = 0.12 > Iout ({u,w}) = 0.11. That is adding nodes

to the seed set may increase or decrease the outward in�uence.

Submodularity. A submodular function expresses the diminis-

hing returns behavior of set functions and are suitable for many

applications, including approximation algorithms and machine le-

arning. If Ω is a �nite set, a submodular function is a set function

f : 2
Ω ← R, where 2

Ω
denotes the power set of Ω, which satis�es

that for every X ,Y ⊆ Ω with X ⊆ Y and every x ∈ Ω \Y , we have,

f (X ∪ {x}) − f (X ) ≥ f (Y ∪ {x}) − f (Y ). (8)

Similar to in�uence spread, outward in�uence, as a function of

the seed set S , is also submodular.

Lemma 1. Given a networkG = (V ,E,w), the outward in�uence
function Iout (S) for S ∈ 2 |V | , is a submodular function

2.3 Hardness of Computation
If we can compute outward in�uence of S , the in�uence spread of

S can be obtained by adding |S | to it. Since computing in�uence

spread is #P-hard [6], it is no surprise that computing outward

in�uence is also #P-hard.

Lemma 2. Given a probabilistic graph G = (V ,E,w) and a seed
set S ⊆ V , it is #P-hard to compute Iout (S).

However, while in�uence spread is lower-bounded by one, the

outward in�uence of any set S can be arbitrarily small (or even

zero). Take an example in Figure 1, node u has in�uence of I({u}) =
1 + p + 2p2 ≥ 1 for any value of p. However, u’s outward in�uence

Iout ({u}) = p + 2p2 can be exponentially small if p = 1

2
n . This

makes estimating outward in�uence challenging, as the number

of samples needed to estimate the mean of random variables is

inversely proportional to the mean.
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Monte-Carlo estimation. A typical approach to obtain an (ϵ,δ )-
approximaion of a random variable is through Monte-Carlo estima-

tion: taking the average over many samples of that random variable.

Through the Bernstein’s inequality [9], we have the lemma:

Lemma 3. Given a set X1,X2, . . . of i.i.d. random variables ha-
ving a common mean µX , there exists a Monte-Carlo estimation
which gives an (ϵ,δ )-approximate of the mean µX and uses T =
O( 1ϵ 2 ln(

2

δ )
b
µX ) random variables where b is an upper-bound of Xi ,

i.e. Xi ≤ b.

To estimate the in�uence spread I(S), existing work often si-

mulates the cascade process using a BFS-like procedure and takes

the average of the cascades’ sizes as the in�uence spread. The

number of samples needed to obtain an (ϵ,δ )-approximation is

O( 1ϵ 2 log
(
1

δ

)
n
I(S ) ) samples. Since I(S) ≥ 1, in the worst-case, we

need only a polynomial number of samples, O( 1ϵ 2 log
(
1

δ

)
n).

Unfortunately, the same argument does not apply for the case of

Iout (S), since Iout (S) can be arbitrarily close to zero. For the same

reason, the recent advances in in�uence estimation in [3, 23] cannot

be adapted to obtain a polynomial-time algorithm to compute an

(ϵ,δ )-approximation (aka FPRAS) for outward in�uence. We shall

address this challenging task in the next section.

We summarize the frequently used notations in Table 1.

Table 1: Table of notations

Notation Description

n,m #nodes, #edges of graph G = (V , E, w ).
I(S ) In�uence Spread of seed set S ⊆ V .

Iout (S ) Outward In�uence of seed set S ⊆ V .

N out (u)
The set of out-neighbors of u : N out (u) = {v ∈

V |(u, v) ∈ E }
N out
S N out

S =
⋃
u∈S N out (u)\S .

Ai
The event thatvi is active andv1, . . . , vi−1 are not active

after round 1.

β0 β0 =
∑l
i=1 Pr[Ai ] = 1 − Pr[Al+1].

c(ϵ, δ ) c(ϵ, δ ) = (2 + 2

3
ϵ ) ln( 2δ )

1

ϵ 2

ϵ ′ ϵ ′ = ϵ
(
1− ϵb
(2+ 2

3
ϵ ) ln( 2δ )(b−a)

)
≈ ϵ (1−O ( 1

lnn )) for δ = 1

n

ϒ ϒ = (1 + ϵ )c(ϵ ′, δ )(b − a)

3 OUTWARD INFLUENCE ESTIMATION VIA
IMPORTANCE SAMPLING

We propose a Fully Polynomial Randomized Approximation Scheme

(FPRAS) to estimate the outward in�uence of a given set S . Given

two precision parameters ϵ,δ ∈ (0, 1), our FPRAS algorithm guaran-

tees to return an (ϵ,δ )-approximate
ˆIout (S) of the outward in�uence

Iout (S),

Pr[(1 − ϵ)Iout (S) ≤ ˆIout (S) ≤ (1 + ϵ)Iout (S)] ≥ 1 − δ . (9)

General idea. Our starting point is an observation that the cascade

triggered by the seed set with small in�uence spread often stops

right at round 0. The probability of such cascades, termed trivial
cascades, can be computed exactly. Thus if we can sample only the

non-trivial cascades, we will obtain a better sampling method to

estimate the outward in�uence. The reason is that the “outward

in�uence” associated with non-trivial cascade is also lower-bounded

by one. Thus, we again can apply the argument in the previous

section on the polynomial number of samples.

Given a graph G and a seed set S , we introduce our importance
sampling strategy to generate such non-trivial cascades. It consists

of two stages:

(1) Guarantee that at least one neighbor of S will be activated

through a biased selection towards the cascades with at

least one node outside of S and,

(2) Continue to simulate the cascade using the standard pro-

cedure following the di�usion model.

This importance sampling strategy is general for di�erent di�usion

models. In the following, we illustrate our importance sampling

under the focused IC model.

3.1 Importance IC Polling
We propose Importance IC Polling (IICP) to sample non-trivial cas-

cades in Algorithm 1.

Figure 2: Neighbors of nodes in S

First, we “merge” all the nodes in S and de�ne a “uni�ed neig-

hborhood” of S . Speci�cally, let N out (u) = {v |(u,v) ∈ E} the

set of out-neighbors of u and N out
S =

⋃
u ∈S

N out
u \S the set of out-

neighbors of S excluding S . For each v ∈ N out
S ,

PS,v = 1 −
∏
u ∈S
(1 −w(u,v)), (10)

the probability that v is activated directly by one (or more) node(s)

in S . Without loss of generality, assume that PS,v ≤ 1 (otherwise,

we simply add v into S).

Assume an order on the neighborhood of S , that is

N out
S = {v1,v2, . . . ,vl },

where l = |N out
S |. For each i = 1..l , let Ai be the event that vi be

the “�rst” node that gets activated directly by S :

Ai = {v1, . . . ,vi−1 are not active and vi is active after round 1}.

The probability of Ai is

Pr[Ai ] = PS,vi

i−1∏
j=1
(1 − PS,vj ). (11)

For consistency, we also denote Al+1 the event that none of the

neighbors are activated, i.e.,

Pr[Al+1] = 1 −

l∑
i=1

Pr[Ai ]. (12)

Note thatAl+1 is also the event that the cascade stops right at round

0. Such a cascade is termed a trivial cascade. As we can compute

exactly the probability of trivial cascades, we do not need to sample

those cascades but focus only on the non-trivial ones.

Denote by β0 the probability of having at least one nodes among

v1, . . . ,vl activated by S , i.e.,
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β0 =
l∑
i=1

Pr[Ai ] = 1 − Pr[Al+1]. (13)

Algorithm 1: IICP - Importance IC Polling

Input: A graph G = (V , E, w ) and a seed set S
Output: Y (S ) - size of a random outward cascade from S

Stage 1 // Sample non-trivial neighbors of set S

1 Precompute Pr[Ai ], i = 1, . . . , l + 1 using Eq. 11 and Eq. 12

2 Select one neighbor vi among v1, . . . , vl with probability of

selecting vi being
Pr[Ai ]
β0

3 Queue R ← {vi };Y (S ) = 1; Mark vi and all nodes in S visited

4 for j = i + 1 : l do
5 With a probability PS,vj do

6 Add vj into R; Y (S ) ← Y (S ) + 1; Mark vj visited.

Stage 2 // Sample from newly influenced nodes

7 while R is non-empty do
8 u ← R .pop()
9 foreach unvisited neighbor v of u do

10 With a probability w (u, v)
11 Add v to R; Y (S ) ← Y (S ) + 1; Mark v visited.

12 return Y (S );

We now explain the details in the Importance IC Polling Algo-

rithm (IICP), summarized in Alg. 1. The algorithm outputs the size

of the cascade minus the seed set size. We term the output of IICP
the outer size of the cascade. The algorithm consists of two stages.

Stage 1. By de�nition, the events Ai ,A2, ...,Al ,Al+1 are disjoint

and form a partition of the sample space. To generate a non-trivial

cascade, we �rst select in the �rst round vi , i = 1, . . . , l with a

probability
Pr[Ai ]
β0
, i = 1, . . . , l (excludingAl+1). This will guarantee

that at least one of the neighbors of S will be activated. Let vi
be the selected node, after the �rst round vi becomes active and

v1, . . . ,vi−1 remains inactive. The nodesvj amongvi+1, . . . ,vl are

then activated independently with probability PS,vj (Eq. 10).

Stage 2. After the �rst stage of sampling neighbors of S , we get

a non-trivial set of nodes directly in�uenced from S . For each of

those nodes and later in�uenced nodes, we will sample a set of its

neighbors by the naive BFS-like IC polling scheme [17]. Assume

sampling neighbors of a newly in�uenced node u, each neighbor

vj ∈ N out (u) is in�uenced by u with probability w(u,vj ). The

neighbors of those in�uenced nodes are next to be sampled in the

same fashion.

In addition, we keep track of the newly in�uenced nodes using

a queue R and the number of active nodes outside S using Y (S ).
The following lemma shows how to estimate the (expected) cas-

cade size through the (expected) outer size of non-trivial cascades.

Lemma 4. Given a seed set S ⊆ V , let Y (S ) be the random varia-
ble associated with the output of the IICP algorithm. The following
properties hold,

• 1 ≤ Y (S ) ≤ n − |S |,
• Iout (S) = E[Y

(S )] · β0.

Further, let ΩW be the probability space of non-trivial cascades

and ΩY the probability space for the outer size of non-trivial cas-

cades, i.e, Y (S ). The probability of Y (S ) ∈ [1,n − |S |] is given by,

Pr[Y (S ) ∈ ΩY ] =
∑

W (S )∈ΩW , |W (S ) |=Y (S )
Pr[W (S ) ∈ ΩW ].

3.2 FPRAS for Outward In�uence Estimation
From Lemma 4, we can obtain an estimate

ˆIout (S) of Iout (S) through

getting an estimate
ˆE[Y (S )] of E[Y (S )] by,

Pr

[
(1 − ϵ)E[Y (S )] ≤ ˆE[Y (S )] ≤ (1 + ϵ)E[Y (S )]

]
= Pr

[
(1 − ϵ)E[Y (S )]β0 ≤ ˆE[Y (S )]β0 ≤ (1 + ϵ)E[Y

(S )]β0
]

= Pr

[
(1 − ϵ)Iout (S) ≤ ˆIout (S) ≤ (1 + ϵ)Iout (S)

]
, (14)

where the estimate
ˆIout (S) = ˆE[Y (S )] · β0. Thus, �nding an (ϵ,δ )-

approximation of Iout (S) is then equivalent to �nding an (ϵ,δ )-

approximate
ˆE[Y (S )] of E[Y (S )].

The advantage of this approach is that estimating E[Y (S )], in

which the random variableY (S ) has value of at least 1, requires only

a polynomial number of samples. Here the same argument on the

number of samples to estimate in�uence spread in subsection 2.3

can be applied. Let Y
(S )
1
,Y
(S )
2
, . . . be the random variables denoting

the output of IICP. We can apply Lemma 3 on the set of random

variables Y
(S )
1
,Y
(S )
2
, . . . satisfying 1 ≤ Y

(S )
i ≤ |V | − |S |. Since each

random variable Y
(S )
i is at least 1 and hence, µY = E[Y

(S )] ≥ 1,

we need at most a polynomial T = O(ln( 2δ )
1

ϵ 2 (n − |S |)) random

variables for the Monte-Carlo estimation. Since, IICP has a worst-

case time complexity O(m + n), the Monte-Carlo using IICP is an

FPRAS for estimating outward in�uence.

Theorem 3.1. Given arbitrary 0 ≤ ϵ,δ ≤ 1 and a set S , the
Monte-Carlo estimation using IICP returns an (ϵ,δ )-approximation
of Iout (S) using O(ln( 2δ )

1

ϵ 2 (n − |S |)) samples.

In Section 5, we will show that both outward in�uence and in-

�uence spread can be estimated by a powerful algorithm saving a

factor of more than
1

ϵ random variables compared to this FPRAS
estimation. The algorithm is built upon our mean estimation algo-

rithms for bounded random variables proposed in the following.

4 EFFICIENT MEAN ESTIMATION FOR
BOUNDED RANDOM VARIABLES

In this section, we propose an e�cient mean estimation algorithm

for bounded random variables. This is the core of our algorithms

for accurately and e�ciently estimating the outward in�uence and

in�uence spread in Section 5.

We �rst propose an ‘intermediate’ algorithm: Generalized Stop-
ping Rule Estimation (GSRA) which relies on a simple stopping rule

and returns an (ϵ,δ )-approximate of the mean of lower-bounded

random variables. The GSRA simultaneously generalizes and �xes

the error of the Stopping Rule Algorithm [9] which only aims to

estimate the mean of [0, 1] random variables and has a technical

error in its proof.

The main mean estimation algorithm, namely Robust Sampling

Algorithm (RSA) presented in Alg. 3, e�ectively takes into account
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both mean and variance of the random variables. It uses GSRA as

a subroutine to estimate the mean value and variance at di�erent

granularity levels.

4.1 Generalized Stopping Rule Algorithm
We aim at obtaining an (ϵ,δ )-approximate of the mean of random

variablesX1,X2, . . . . Speci�cally, the random variables are required

to satisfy the following conditions:

• a ≤ Xi ≤ b, ∀i = 1, 2, . . .

• E[Xi+1 |X1,X2, ...,Xi ] = µX , ∀i = 1, 2, . . .

where 0 ≤ a < b are �xed constants and (unknown) µX .

Our algorithm generalizes the stopping rule estimation in [9]

that provides (ϵ,δ ) estimation of the mean of i.i.d. random variables

X1,X2, ... ∈ [0, 1]. The notable di�erences are the following:

• We discover and amend an error in the stopping algorithm

in [9]: the number of samples drawn by that algorithm may

not be su�cient to guarantee the (ϵ,δ )-approximation.

• We allow estimating the mean of random variables that

are possibly dependent and/or with di�erent distributions.
Our algorithm works as long as the random variables have

the same means. In contrast, the algorithm in [9] can only

be applied for i.i.d random variables.

• Our proposed algorithm obtains an unbiased estimator of

the mean, i.e. E[µ̂X ] = µX while [9] returns a biased one.

• Our algorithm is faster than the one in [9] whenever the

lower-bound for random variables a > 0.

Algorithm 2: Generalized Stopping Rule Alg. (GSRA)

Input: Random variables X1, X2, . . . and 0 < ϵ, δ < 1

Output: An (ϵ, δ )-approximate of µX = E[Xi ]
1 If b − a < ϵb , return µX = a.

2 Compute: ϵ ′ = ϵ
(
1 − ϵb

(2+ 2

3
ϵ ) ln( 2δ )(b−a)

)
; ϒ = (1 + ϵ )c(ϵ ′, δ )(b − a);

3 Initialize h = 0, T = 0;

4 while h < ϒ do
5 h ← h + XT , T ← T + 1;

6 return µ̂X = h/T ;

Our Generalized Stopping Rule Algorithm (GSRA) is described

in details in Alg. 2. Denote c(ϵ,δ ) = (2 + 2

3
ϵ) ln( 2δ )

1

ϵ 2 .

The algorithm contains two main steps: 1) Compute the stop-

ping threshold ϒ (Line 2) which relies on the value of ϵ ′ computed

from the given precision parameters ϵ,δ and the range [a,b] of the

random variables; 2) Consecutively acquire the random variables

until the sum of their outcomes exceeds ϒ (Line 4-5). Finally, it

returns the average of the outcomes, µ̂X = h/T (Line 6), as an esti-

mate for the mean, µX . Notice that ϒ in GSRA depends on (b − a)
and thus, getting tighter bounds on the range of random variables

holds a key for the e�ciency of GSRA in application perspectives.

The approximation guarantee and number of necessary samples

are stated in the following theorem.

Theorem 4.1. The Generalized Stopping Rule Algorithm (GSRA)
returns an (ϵ,δ )-approximate µ̂X of µX , i.e.,

Pr[(1 − ϵ)µX ≤ µ̂X ≤ (1 + ϵ)µX ] > 1 − δ , (15)

and, the number of samples T satis�es,

Pr[T ≤ (1 + ϵ)ϒ/µX ] > 1 − δ/2. (16)

The hole in the StoppingRuleAlgorithm in [9]. The estima-

tion algorithm in [9] for estimating the mean of random variables

in range [0, 1] also bases on a main stopping rule condition as our

GSRA. It computes a threshold

ϒ1 = 1 + (1 + ϵ)4(e − 2) ln(
2

δ
)
1

ϵ2
, (17)

where e is the base of natural logarithm, and generates samples

X j until

∑T
j=1 X j ≥ ϒ1. The algorithm returns µ̂X =

ϒ1
T as a biased

estimate of µX .

Unfortunately, the threshold ϒ1 to determine the stopping time

does not completely account for the fact that the necessary number

of samples should go over the expected one in order to provide

high solution guarantees. This actually causes a �aw in their later

proof of the correctness.

To amend the algorithm, we slightly strengthen the stopping

condition by replacing the ϵ in the formula of ϒ with an ϵ ′ =

ϵ
(
1 − ϵb

(2+ 2

3
ϵ ) ln( 2δ )(b−a)

)
(Line 2, Alg. 2). Since ϵb < b − a (else the

algorithm returns µX = a) and assume w.l.o.g. that δ < 1/2, it fol-

lows that ϵ ′ ≥ 0.729ϵ . Thus the number of samples, in comparison

to those in the stopping rule algorithm in [9] increases by at most

a constant factor.

Bene�t of considering the lower-bound a. By dividing the

random variables by b, one can apply the stopping rule algorithm in

[9] on the normalized random variables. The corresponding value

of ϒ is then

ϒ = 1 + (1 + ϵ)(2 +
2

3

ϵ) ln(
2

δ
)
1

ϵ ′2
b (18)

ϒ in our proposed algorithm is however smaller by a multiplicative

factor of
b−a
b . Thus it is faster than the algorithm in [9] by a factor

of
b−a
b on average. Note that in case of estimating the in�uence, we

have a = 1,b = n − |S |. Compared to algorithm applied [9] directly,

our GSRA algorithm saves the generated samples by a factor of

b−a
b =

n−|S |−1
n = 1 −

|S |+1
n < 1.

Martingale theory to copewithweakly-dependent random
variables. To prove Theorem 4.1, we need a stronger Cherno�-like

bound to deal with the general random variables X1,X2, . . . in

range [a,b] presented in the following.

Let de�ne random variables Yi =
∑i
j=1(X j − µX ),∀i ≥ 1. Hence,

the random variables Y1,Y2, . . . form a Martingale [24] due to the

following,

E[Yi |Y1, . . . ,Yi−1] = E[Yi−1] + E[Xi − µX ] = E[Yi−1].

Then, we can apply the following lemma from [7] stating,

Lemma 5. Let Y1, . . . ,Yi , ... be a martingale, such that |Y1 | ≤ α ,
|Yj − Yj−1 | ≤ α for all j = [2, i], and

Var[Y1] +
i∑
j=2

Var[Yj |Y1, . . . ,Yj−1] ≤ β . (19)

Then, for any λ ≥ 0,

Pr[Yi − E[Yi ] ≥ λ] ≤ exp(−
λ2

2/3 · α · λ + 2 · β
) (20)

In our case, we have |Y1 | = |X1− µX | ≤ b −a, |Yj −Yj−1 | = |Xi −
µX | ≤ b−a,Var[Y1] = Var[X1−µX ] = Var[X ] andVar[Yj |Y1, . . . ,Yj ] =
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Var[X j − µX ] = Var[X ]. Apply Lemma 2 with i = T and λ = ϵT µX ,

we have,

Pr

[ T∑
j=1

X j ≥ (1 + ϵ)µXT
]
≤ exp

( −ϵ2T 2µ2X
2

3
(b − a)ϵµXT + 2Var[X ]T

)
(21)

Then, since Var[X ] ≤ µX (b − µX ) ≤ µX (b − a) ( since Bernoulli

random variables with the same mean µX have the maximum vari-

ance), we also obtain,

Pr

[ T∑
j=1

X j ≥ (1 + ϵ)µXT
]
≤ exp

( −ϵ2T µX

(2 + 2

3
ϵ)(b − a)

)
. (22)

Similarly, −Y1, . . . ,−Yi , . . . also form a Martingale and applying

Lemma 5 gives the following probabilistic inequality,

Pr

[ T∑
j=1

X j ≤ (1 − ϵ)µXT
]
≤ exp

(
−

ϵ2T µX
2(b − a)

)
. (23)

Algorithm 3: Robust Sampling Algorithm (RSA)

Input: Two streams of i.i.d. random variables, X1, X2, . . . and

X ′
1
, X ′

2
, . . . and 0 < ϵ, δ < 1

Output: An (ϵ, δ )-approximate µ̂X of µX

Step 1 // Obtain a rough estimate µ̂′X of µX

1 if ϵ ≥ 1/4 then
2 return µ̂X ← GSRA(< X1, X2, . . . >, ϵ, δ )

3 µ̂′X ← GSRA(< X1, X2, . . . >,
√
ϵ, δ/3)

Step 2 // Estimate the variance σ̂ 2

X

4 ϒ2 = 2
1+
√
ϵ

1−
√
ϵ
(1 + ln( 3

2
)/ln( 2δ )) · ϒ;Nσ = ϒ2 · ϵ/µ̂′X ;∆ = 0; // ϒ is

defined the same as in Alg. 2

5 for i = 1 : Nσ do
6 ∆← ∆ + (X ′

2i − X
′
2i+1)

2
/2;

7 ρ̂X = max{σ̂ 2

X = ∆/Nσ , ϵ µ̂′X (b − a)};

Step 3 // Estimate µX

8 Set T = ϒ2 · ρ̂X /(µ̂′2X (b − a)), S ← 0;

9 for i = 1 : T do
10 S ← S + Xi ;

11 return µ̂X = S/T ;

4.2 Robust Sampling Algorithm
Our previously proposed GSRA algorithm may have problem in

estimating means of random variables with small variances. An im-

portant tool that we rely on to prove the approximation guarantee

in GSRA is the Cherno�-like bound in Eq. 22 and Eq. 23. However,

from the inequality in Eq. 21, we can also derive the following

stronger inequality,

Pr

[ T∑
j=1

X j ≥ (1 + ϵ)µXT
]
≤ exp

( −ϵ2T 2µ2X
2

3
(b − a)ϵµXT + 2Var[X ]T

)
≤ exp

( −ϵ2T µ2X

(2 + 2

3
)max{ϵµX (b − a),Var[X ]}

)
. (24)

In many cases, random variables have small variances and hence

max{ϵµX (b −a),Var[X ]} = ϵµX (b −a). Thus, Eq. 24 is much stron-

ger than Eq. 22 and can save a factor of
1

ϵ in terms of required

observed in�uences translating into the sample requirement. Ho-

wever, both the mean and variance are not available.

To achieve a robust sampling algorithm in terms of sample com-

plexity, we adopt and improve theAA algorithm in [9] for general

cases of [a,b] random variables. The robust sampling algorithms

(RSA) subsequently will estimate both the mean and variance in

three steps: 1) roughly estimate the mean value with larger error

(

√
ϵ or a constant); 2) use the estimated mean value to compute

the number of samples necessary for estimating the variance; 3)

use both the estimated mean and variance to re�ne the required

samples to estimate mean value with desired error (ϵ,δ ).

Let X1,X2, . . . and X ′
1
,X ′

2
, . . . are two streams of i.i.d random

variables. Our robust sampling algorithm (RSA) is described in

Alg. 3. It consists of three main steps:

1) If ϵ ≥ 1/4, run GSRA with parameter ϵ,δ and return the

result (Line 1-2). Otherwise, assume ϵ < 1/4 and use the

Generalized Stopping Rule Algorithm (Alg. 2) to obtain

an rough estimate µ̂ ′X using parameters of ϵ ′ =
√
ϵ <

1/2,δ ′ = δ/3 (Line 3).

2) Use the estimated µ̂ ′X in step 1 to compute the necessary

number of samples, Nσ , to estimate the variance of Xi , σ̂
2

X .

Note that this estimation uses the second set of samples,

X ′
1
,X ′

2
, . . .

3) Use both µ̂ ′X in step 1 and σ̂ 2X in step 2 to compute the

actual necessary number of samples, T , to approximate

the mean µX . Note that this uses the same set of samples

X1,X2, . . . as in the �rst step.

The numbers of samples used in the �rst two steps are always less

than a constant times ϒ · ϵ/µX which is the minimum samples that

we can achieve using the variance. This is because the �rst takes

the error parameter

√
ϵ which is higher than ϵ and the second step

uses Nσ = ϒ2 · ϵ/µ̂
′
X samples.

At the end, the algorithm returns the in�uence estimate µ̂X
which is the average over T samples, µ̂X = S/T . The estimation

guarantees are stated in the following theorem.

Theorem 4.2. LetX be the probability distribution thatX1,X2, . . .

and X ′
1
,X ′

2
, . . . are drawn from. Let µ̂X be the estimate of E[X ] re-

turned by Alg. 3 and T be the number of drawn samples in Alg. 3
w.r.t. ϵ,δ . We have,

(1) Pr[µX (1 − ϵ) ≤ µ̂X ≤ (1 + ϵ)µX ] ≥ 1 − δ ,
(2) There is a universal constant c ′ such that

Pr[T > c ′ϒρX /(µ
2

X (b − a))] ≤ δ (25)

where ρZ = max{ϵµX (b − a),Var[X ]}.
Compared to the AA algorithm in [9], �rst of all, we replace

their stopping rule algorithm with GSRA and also, we change the

computation of ϒ2 which is always smaller than that of [9] by a

factor of 1 +
√
ϵ − 2ϵ ≥ 1 when ϵ ≤ 1/4.

5 INFLUENCE ESTIMATION AT SCALE
This section applies our RSA algorithm to estimate both the outward

in�uence and the traditional in�uence spread.

5.1 Outward In�uence Estimation
We directly apply RSA algorithm on two streams of i.i.d. random

variables Y
(S )
1
,Y
(S )
2
, . . . and Y

′(S )
1
,Y
′(S )
2
, . . . , which are generated

by IICP sampling algorithm, with the precision parameters ϵ,δ .
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The algorithm is called Scalable Outward In�uence Estimation
Algorithm (SOIEA) and presented in Alg. 4 which generates two stre-

ams of random variables Y
(S )
1
,Y
(S )
2
, . . . and Y

′(S )
1
,Y
′(S )
2
, . . . (Line 1)

and applies RSA algorithm on these two streams (Line 2). Note that

outward in�uence estimate is achieved by scaling down µY by β0
(Lemma 4).

Algorithm 4: SOIEA Alg. to estimate outward in�uence

Input: A probabilistic graph G, a set S and ϵ, δ
Output: ˆI(S ) - an (ϵ, δ )-estimate of I(S )

1 Generate two streams of i.i.d. random variables Y (S )
1

, Y (S )
2

, . . . and

Y ′(S )
1

, Y ′(S )
2

, . . . by IICP algorithm.

2 return ˆIout (S ) ← β0 · RSA(< Y (S )
1

, · · · >, < Y ′(S )
1

, · · · >, ϵ, δ )

We obtain the following theoretical results incorporated from

Theorem 4.2 of RSA and IICP samples.

Theorem 5.1. The SOIEA algorithm gives an (ϵ,δ ) outward in-
�uence estimation. The observed outward in�uences (sum ofY (S )) and
the number of generated random variables are inO(ln( 2δ )

1

ϵ 2
ρY

Iout (S )/β0
)

andO(ln( 2δ )
1

ϵ 2
ρY

I2out (S )/β
2

0

) respectively, where ρY = max{ϵIout (S)(n−

|S | − 1)/β0,Var[Y
(S )
i ]}.

Note that E[Y (S )] = Iout (S)/β0 ≥ 1.

5.2 In�uence Spread Estimation
Not only is the concept of outward in�uence helpful in discrimina-

ting the relative in�uence of nodes but also its sampling technique,

IICP, can help scale up the estimation of in�uence spread (IE) to

billion-scale networks.

Naive approach. A naive approach is to 1) obtain an (ϵ,δ )-

approximation
ˆIout (S) of Iout (S) using Monte-Carlo estimation

2) return
ˆIout (S) + |S |. It is easy to show that this approach re-

turn an (ϵ,δ )-approximation for I(S). This approach will require

O(ln( 2δ )
1

ϵ 2n) IICP random samples.

However, the naive approach is not optimized to estimate in�u-

ence due to several reasons: 1) a loose bound µY = E[Y
(S )] ≥ 1

is applied to estimate outward in�uence; 2) casting from (ϵ,δ )-
approximation of outward in�uence to (ϵ,δ )-approximation of in-

�uence introduces a gap that can be used to improve the estimation

guarantees. We next propose more e�cient algorithms based on

Importance IC Sampling to achieve an (ϵ,δ )-approximate of both

outward in�uence and in�uence spread. Our methods are based on

two e�ective mean estimation algorithms.

Our approach. Based on the observations that

• 1 ≤ Y (S ) ≤ n − |S |, i.e., we know better bounds for Y (S ) in

comparison to the cascade size which is in the range [1,n].

• As we want to have an (ϵ,δ )-approximation for Y (S ) + |S |,
the �xed add-on |S | can be leveraged to reduce the number

of samples.

We combine the e�ective RSA algorithm with our Importance

IC Polling (IICP) for estimating the in�uence spread of a set S .

For in�uence spread estimation, we will analyze random variables

based on samples generated by our Importance IC Polling scheme

and use those to devise an in�uence estimation algorithm.

Since outward in�uence and in�uence spread di�er by an addi-

tive factor of |S |, for each outward sample Y (S ) generated by IICP,

let de�ne a corresponding variable Z (S ),

Z (S ) = Y (S ) · β0 + |S |, (26)

where β0 is de�ned in Eq. 13. We obtain,

• |S | + β0 ≤ Z (S ) ≤ |S | + β0(n − |S |),

• E[Z (S )] = E[Y (S )] · β0 + |S | = Iout (S) + |S | = I(S),
and thus we can to approximate I(S) by estimating E[Z (S )].

Recall that to estimate the in�uence I(S) of a seed set S , all the

previous works [6, 17, 21] resort to simulating many in�uence cas-

cades from S and take the average size of those generated cascades.

Let call M(S ) the random variable representing the size of such a

in�uence cascade. Then, we have E[M(S )] = I(S). Although both

Z (S ) and M(S ) can be used to estimate the in�uence, they have

di�erent variances that lead to di�erence in convergence speed

when estimating their means. The relation between variances of

Z (S ) and M(S ) is stated as follows.

Lemma 6. Let Z (S ) de�ned in Eq. 26 andM(S ) be random variable
for the size of a in�uence cascade, the variances of Z (S ) and M(S )

satisfy,
Var[Z (S )] = β0 · Var[M

(S )] − (1 − β0)I
2

out (S) (27)

Note that 0 ≤ β0 ≤ 1 and I(S) ≥ |S |. Thus, the variance of Z (S ) is

much smaller thanM(S ). Our proposed RSA on random variablesXi
makes use of the variances of random variables and thus, bene�ts

from the small variance of Z (S ) compared to the same algorithm

on the previously known random variables M(S ).

Algorithm 5: SIEA Alg. to estimate in�uence spread

Input: A probabilistic graph G, a set S and ϵ, δ
Output: ˆI(S ) - an (ϵ, δ )-estimate of I(S )

1 Generate two streams of i.i.d. random variables Y (S )
1

, Y (S )
2

, . . . and

Y ′(S )
1

, Y ′(S )
2

, . . . by IICP algorithm.

2 Compose two streams Z (S )
1

, Z (S )
2

, . . . and Z ′(S )
1

, Z ′(S )
2

, . . . from

Y (S )
1

, Y (S )
2

, . . . and Y ′(S )
1

, Y ′(S )
2

, . . . using Eq. 26.

3 return ˆI(S ) ←RSA(< Z (S )
1

, · · · >, < Z ′(S )
1

, · · · >, ϵ, δ )

Thus, we apply the RSA on random variables generated by IICP
to develop Scalable In�uence Estimation Algorithm (SIEA). SIEA is

described in Alg. 5 which consists of two main steps: 1) generate

i.i.d. random variables by IICP and 2) convert those variables to

be used in RSA to estimate in�uence of S . The results are stated as

follows,

Theorem 5.2. The SIEA algorithm gives an (ϵ,δ ) in�uence spread
estimation. The observed in�uences (sum of random variables Z (S ))
and the number of generated random variables are inO(ln( 2δ )

1

ϵ 2
ρZ
I(S ) )

andO(ln( 2δ )
1

ϵ 2
ρZ
I2(S ) ), where ρZ = max{ϵI(S)β0(n−|S |−1),Var[Z

(S )
i ]}.

Comparison to INFEST [23]. Compared to the most recent

state-of-the-art in�uence estimation in [23] that requiresO(
n log

5(n)
ϵ 2 )

observed in�uences, the SIEA algorithm incorporating IICP sam-

pling with RSA saves at least a factor of log
4(n). That is because the

necessary observed in�uences in SIEA is bounded byO(ln( 2δ )
1

ϵ 2
β0ρZ
I(S ) ).

Since Var[Z
(S )
i ] ≤ I(S)(|S |+β0(n− |S |)− I(S)) ≤ I(S)(n− |S | −1) and
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hence, ρZ ≤ I(S)(n − |S | − 1), when δ = 1

n as in [23], the observed

in�uences is then,

O(ln(
2

δ
)
1

ϵ2
ρZ
I(S)
) ≤ O(

n log(2/δ )

ϵ2
) ≤ O(

n log(n)

ϵ2
) (28)

Consider ϵ,δ as constants, the observed in�uences is O(n).

5.3 In�uence Spread under other Models
We can easily apply the RSA estimation algorithm to obtain an (ϵ,δ )-
estimate of the in�uence spread under other cascade models as long

as there is a Monte-Carlo sampling procedure to generate sizes of

random cascades. For most stochastic di�usion models, including

both discrete-time models, e.g. the popular LT with a naive sample

generator described in [17], SI and SIR [10] or their variants with

deadlines [26], and continuous-time models [12], designing such

a Monte-Carlo sampling procedure is straightforward. Since the

in�uence cascade sizes are at least the seed size, we always needs

at most O(n) samples.

To obtain more e�cient sampling procedures, we can extend the

idea of sampling non-trivial cascade in IICP to other models. Such

sampling procedures in general will result in random variables with

smaller variances and tighter bounds on the ranges. In turns, RSA,

that bene�ts from smaller variance and range, will requires fewer

samples for estimation.

5.4 Parallel Estimation Algorithms
We develop the parallel versions of our algorithms to speed up the

computation and demonstrate the easy-to-parallelize property of

our methods. Our main idea is that the random variable generation

by IICP can be run in parallel. In particular, random variables used

in each step of the core RSA algorithm can be generated simultane-

ously. Recall that IICP only needs to store a queue of newly active

nodes, an array to mark the active nodes and a single variable Y (S ).
In total, each thread requires space in order of the number of active

nodes in that simulation, O(Y (S )), which is at most linear with size

of the graph O(n). In fact due to the stopping condition of linear

number of observed in�uences, the total size of all the threads is

bounded by O(n) assumed the number of threads is relatively small

compared to n.

Moreover, our algorithms can be implemented e�ciently in terms

of communication cost in distributed environments. This is because

the output of IICP algorithm is just a single number Y (S ) and thus,

worker nodes in a distributed environment only communicate that

single number back to the node running the estimation task. Here

each IICP node holds a copy of the graph. However, the program-

ming model needs to be considered carefully. For instance, as poin-

ted out in many studies that the famous MapReduce is not a good

�t for iterative graph processing algorithms [14, 22].

6 EXPERIMENTS
We will experimentally show that Outward In�uence Estimation

(SOIEA) and Outward-Based In�uence Estimation (SIEA) are not

only several orders of magnitudes faster than existing state-of-the-

art methods but also consistently return much smaller errors. We

present empirical validation of our methods on both real world and

synthetic networks.

6.1 Experimental Settings
Algorithms. We compare performance of SOIEA and SIEA with

the following algorithms:

• INFEST [23]: A recent in�uence estimation algorithm by

Lucier et al. [23] in KDD’15 that provides approximation

guarantees. We reimplement the algorithm in C++ accor-

dingly to the description in [23]
1
.

• MC10K, MC100K: Variants of Monte-Carlo method that

generates the traditional in�uence cascades [17, 21] to es-

timate (outward) in�uence spread.

• MCϵ,δ : The Monte-Carlo method that uses the traditio-

nal in�uence cascades and guarantees (ϵ,δ )-estimation.

Following [23], MCϵ,δ is only for measuring the running

time of the normal Monte-Carlo to provide the same (ϵ,δ )-
approximation guarantee. In particular, we obtain running

time of MCϵ,δ by interpolating from that from MC10K, i.e.

1

ϵ 2 ln(
1

δ )n
Time(MC10K)

10000
.

Table 2: Datasets’ Statistics

Dataset #Nodes #Edges Avg. Degree

NetHEP
2

15K 59K 4.1

NetPHY
2

37K 181K 13.4

Epinions
2

75K 841K 13.4

DBLP
2

655K 2M 6.1

Orkut
2

3M 117M 78.0

Twitter [20] 41.7M 1.5G 70.5

Friendster
2

65.6M 1.8G 54.8

2
From http://snap.stanford.edu

Datasets. We use both real-world networks and synthetic net-

works generated by GTgraph [2]. For real world networks, we

choose a set of 7 datasets with sizes from tens of thousands to 65.6

millions. Table 2 gives a summary. GTgraph generates synthetic

graphs with varying number of nodes and edges.

Metrics.We compare the performance of the algorithms in terms

of solution quality and running time. To compare the solution qua-

lity, we adopt the relative error which shows how far the estimated

number from the “ground truth". The relative error of outward

in�uence is computed as follows:

|
ˆIout (S)

Iout (S)
− 1| · 100% (29)

where
ˆIout (S) is estimated outward in�uence of seed set S by the

algorithm, Iout (S) is “ground truth" for S .

Similarly, relative error of in�uence spread is,

|
ˆI(S)

I(S)
− 1| · 100% (30)

We test the algorithms on estimating di�erent seed set sizes. For

each size, we generate a set of 1000 random seed sets. We will report

the average relative error (Avg. Rel. Error) and maximum relative

error (Max. Rel. Error).

Ground-truth computation. We use estimates of in�uence

and outward in�uence with a very small error corresponding to

the setting ϵ = 0.005,δ = 1/n. We note that previous researches

[23, 31] compute the “ground truth" by running Monte-Carlo with

1
Through communication with the authors of [23], the released code has some problem

and is not ready for testing.
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Table 3: Comparing performance of algorithms in estimating outward in�uences

Avg. Rel. Error (%) Max. Rel. Error (%) Running time (sec)

Dataset Edge Models SOIEA MC10K MC100K SOIEA MC10K MC100K SOIEA MC10K MC100K MCϵ,δ

NetHEP

wc 0.3 1.9 0.6 2.3 25.0 8.9 0.1 0.1 0.1 12.3

p = 0.1 1.0 3.7 1.2 9.7 63.0 17.2 0.2 0.1 1.0 149.5

p = 0.01 0.0 4.5 1.6 0.2 20.2 9.2 0.2 0.1 0.1 8.8

p = 0.001 0.0 19.2 4.6 0.1 100.0 26.4 0.2 0.1 0.1 8.5

NetPHY

wc 0.1 1.4 0.4 1.5 32.8 6.2 0.4 0.1 0.1 34.7

p = 0.1 0.5 4.0 1.3 6.6 46.3 18.5 0.5 0.1 0.5 203.0

p = 0.01 0.0 5.5 1.7 0.2 30.4 10.7 0.6 0.1 0.1 25.0

p = 0.001 0.0 19.1 5.1 0.0 80.0 28.1 0.7 0.1 0.1 24.0
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Figure 3: Error distributions (histogram) of the approximation errors of SOIEA,MC10K,MC100K on NetHEP
10,000 samples which is not su�cient as we will show later in our

experiments.

Parameter Settings. For each of the datasets, we consider two

common edge weighting models:

• Weighted Cascade (WC): The weight of edge (u,v) is cal-

culated as w(u,v) = 1

din (v)
where din (v) denotes the in-

degree of node v , as in [6, 8, 28, 31, 32].

• Constant model: All the edges has the same constant pro-

bability p as in [6, 8, 17]. We consider three di�erent values

of p, i.e. 0.1, 0.01, 0.001.

We set ϵ = 0.1, δ = 1/n for SOIEA and SIEA by default or

explicitly stated otherwise.

Environment. All algorithms are implemented in C++ and com-

piled using GCC 4.8.5. We conduct all experiments on a CentOS 7

workstation with two Intel Xeon 2.30GHz CPUs adding up to 20

physical cores and 250GB RAM.

6.2 Outward In�uence Estimation
We compare SOIEA against MC10K and MC100K in four di�erent

edge models on NetHEP and NetPHY dataset. The results are pre-

sented in Table 3 and Figure 3.

6.2.1 Solution �ality. Table 3 illustrates that the outward in-

�uences computed by SOIEA consistently have much smaller errors

in both average and maximum cases than MC10K and MC100K in all

edge models. In particular, on NetHEP with p = 0.001 edge model,

SOIEA has average relative error close to 0% while it is 19.2% and

4.6% for MC10K, MC100K respectively; the maximum relative errors

of MC10K, MC100K in this case are 100%, 26.4% which are much

higher than SOIEA of 0.1%. Apparently, MC100K has smaller error

rate than MC10K since it uses 10 times more samples.

Figure 3 shows error distributions of SOIEA,MC10K, andMC100K
on NetHEP. In all considered edge models, SOIEA’s error highly

concentrates around 0% while errors of MC10K and MC100K wildly

spread out to a very large spectrum. In particular, SOIEA has a

huge spike at the 0 error while both MC10K and MC100K contain

two heavy tails in two sides of their error distributions. Moreover,

when p gets smaller, the tails get larger as more and more empty

in�uence simulations are generated in the traditional method.

6.2.2 Running Time. From Table 3, the running time of MC10K
and MC100K is close to that of SOIEA while MCϵ,δ takes up to 700

times slower than the others. Thus, in order to achieve the same

approximation guarantee as SOIEA, the naive Monte-Carlo will

need 700 more time than SOIEA.

Overall, SOIEA achieves signi�cantly better solution quality and

runs substantially faster than Monte-Carlo method. With larger

number of samples, Monte-Carlo method can improve the quality

but the running time severely su�ers.

6.3 In�uence Spread Estimation
This experiment evaluates SIEA by comparing its performance with

the most recent state-of-the-art INFEST and naive Monte-Carlo

in�uence estimation. Here, we use WCmodel to assign probabilities

for the edges. We set the ϵ parameter for INFEST to 0.4 since we

cannot run with smaller value of ϵ for this algorithm. Note that

INFEST guarantees an error of (1 + 8ϵ), which is equivalent to a
maximum relative error of 320%. For a fair comparison, we also run

SIEA with ϵ = 0.4. We use the gold-standard 10000 samples for the

Monte-Carlo method (MC10K). We set a time limit of 6 hours for

all algorithms.

6.3.1 Solution �ality. Table 4 presents the solution quality of

the algorithms in estimating size 1 seed sets, i.e. |S | = 1. It shows

that SIEA consistently achieves substantially higher quality solution

than both INFEST and MC10K. Note that INFEST can only run on

NetHEP and NetPHY under time limit. The average relative error

of INFEST is 88 to 229 times higher than SIEA while its maximum

relative error is up to 82% compared to the ground truth. The large

relative error of INFEST is explained by its loose guaranteed relative

error (320%). Whereas, the average relative error of MC10K is up to

37 times higher than SIEA. The maximum relative error of MC10K
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Table 4: Comparing performance of algorithms in estimating in�uence spread inWCModel (seed set size |S | = 1)
Avg. Rel. Error (%) Max. Rel. Error (%) Running time (sec.)

Dataset SIEA MC10K INFEST SIEA MC10K INFEST SIEA SIEA (16 cores) MC10K MCϵ,δ INFEST

NetHEP 0.2 1.2 17.7 1.5 6.6 82.7 0.1 0.1 0.0 0.8 3417.6

NetPHY 0.1 0.4 22.9 0.6 5.3 43.0 0.1 0.1 0.0 2.6 8517.7

Epinions 0.9 5.3 n/a 5.2 19.7 n/a 0.2 0.1 0.0 21.9 n/a

DBLP 0.3 1.2 n/a 1.9 8.7 n/a 2.8 1.3 0.1 770.4 n/a

Orkut 0.5 3.0 n/a 3.2 16.0 n/a 54.2 4.76 2.9 8.2 · 104 n/a

Twitter 1.0 37.1 n/a 3.1 240.8 n/a 1272.3 106.2 7.9 3.5 · 106 n/a

Friendster 0.1 3.1 n/a 0.6 23.6 n/a 1510.1 165.1 2.8 2.1 · 106 n/a

Table 5: Comparing performance of algorithms in estimating in�uence spread inWCModel (seed set size |S | = 5%|V |)
Avg. Rel. Error (%) Max. Rel. Error (%) Running time (sec.)

Dataset SIEA MC10K INFEST SIEA MC10K INFEST SIEA SIEA (16 cores) MC10K MCϵ,δ INFEST

NetHEP 0.1 0.0 11.1 0.4 0.2 14.1 0.1 0.1 2.1 191.7 600.5

NetPHY 0.1 0.0 24.4 0.2 0.1 26.3 0.1 0.1 5.3 1297.1 3326.4

Epinions 0.2 0.1 20.2 0.4 0.2 23.8 0.3 0.1 20.1 1.1 · 104 9325.6

DBLP 0.0 1.8 n/a 0.2 1.9 n/a 3.5 0.3 184.9 1.0 · 106 n/a

Orkut 0.1 0.0 n/a 0.7 0.1 n/a 51.6 4.6 5322.8 1.5 · 108 n/a

Twitter 0.2 n/a n/a 0.5 n/a n/a 1061.6 93.5 n/a n/a n/a

Friendster 0.1 n/a n/a 0.2 n/a n/a 2068.8 183.1 n/a n/a n/a

is up to 240% higher than the ground truth on Twitter dataset that

demonstrates the insu�ciency of using 10000 traditional in�uence

samples to get the ground truth.

Di�er from Table 4, Table 5 shows the results in estimating

in�uences of seed sets of size 5% the total number of nodes. Under 6

hour limit, INFEST can only run on NetHEP, NetPHY, and Epinions

while MC10K could not handle the large Twitter and Friendster

graph. INFEST still has a very high error compared to the other two

while SIEA and MC10K returns the similar quality solutions. This is

because 5% of the nodes is an enormous number, i.e. > 1000000 for

Friendster, and thus, the in�uence is huge and very few samples

are needed regardless of using the traditional method or IICP.

6.3.2 Running Time. In both cases of two seed set sizes, SIEA
vastly outperforms MCϵ,δ and INFEST by several orders of magni-

tudes. INFEST is up to 10
5

times slower than SIEA and can only run

on small networks, i.e. NetHEP, NetPHY and Epinions. Compared

with MCϵ,δ , the speedup factor is around 10
4
, thus, MC10K cannot

run for the two largest networks, Twitter and Friendster in case

|S | = 5%|V |.
We also test the parallel version of SIEA. With 16 cores, SIEA runs

about 12 times faster than that on a single core in large networks

achieving an e�ective factor of around 75%.

Overall, SIEA consistently achieves much better solution quality

and run signi�cantly fastest than INFEST and the naive MC method.

Surprisingly, under time limit of 6 hours, INFEST can only handle

small networks and has very high error. The MC method achie-

ves better accuracy for large seed sets, however, its running time

increases dramatically resulting in failing to run on large datasets.

6.4 Scalability Test
We test the scalability of the single core and parallel versions of

our method on synthetic networks generated by the well-known

GTgraph with various network sizes. We also carry the same tests

on the real-world Twitter network in comparison with the MC.
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Figure 4: Running time of SIEA on synthetic networks
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Figure 5: Comparing SIEA,MC10K andMCϵ,δ on Twitter

6.4.1 On Synthetic Datasets. We generate synthetic graphs using

GTgraph[2], a standard graph generator used widely in large scale

experiments on graph algorithms [1, 4, 15]. We generate graphs

with number of nodes n ∈ {105, 106, 107, 108}. For each size n, we

generate 3 di�erent graphs with average degree d ∈ {10, 20, 30}.
We use the WC model to assign edge weights. We run SIEA with

di�erent number of cores C = {1, 4, 16}
Figure 4 reports the time SIEA spent to estimate in�uence spread

of seed set of size 1. With the same number of nodes, we see that

the running time of SIEA does not signi�cantly increase as the

average degree increases. Figure 4b views Figure 4a in logarithmic

scale to show the linear increase of running time with respect to

the increases of nodes. As expected, SIEA speeds up proportionally
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Table 6: Comparing performance of algorithms in estimating in�uence spread in LT model (seed set size |S | = 1)
Avg. Rel. Error (%) Max. Rel. Error (%) Running time (sec.)

Dataset SIEALT MC10K MC100K SIEALT MC10K MC100K SIEALT SIEALT (16 cores) MC10K MC100K MCϵ,δ

NetHEP 1.6 1.6 0.6 8.4 7.9 2.5 0.0 0.0 0.0 0.1 1.0

NetPHY 1.2 0.5 0.3 12.7 4.4 1.4 0.0 0.0 0.0 0.1 2.9

Epinions 1.5 4.3 2.2 7.0 17.4 7.4 0.7 0.4 0.0 0.4 24.5

DBLP 0.4 1.0 0.5 5.7 11.4 2.2 2.4 0.4 0.3 2.5 1530.4

Orkut 0.5 3.3 1.1 1.9 22.1 5.9 249.4 25.0 8.5 84.2 4.6 · 104

Twitter 2.4 36.1 20.7 7.1 97.5 85.6 6820.0 548.6 32.2 287.6 1.4 · 107

Friendster 0.2 3.1 1.4 2.4 16.5 9.0 6183.9 701.8 20.4 137.8 9.3 · 106

to number of cores used. As a result, SIEA with 16 cores is able to

estimate in�uence spread of a random node on a synthetic graph

of 100 million nodes and 1.5 billion of edges in just 5 minutes.

6.4.2 On Twi�er Dataset. Figure 5 evaluates the performance

of SIEA in comparison with MC10K on various seed set sizes |S | =
{1, 10, 100, 1k, 10k} on Twitter dataset. On all the sizes of seed sets,

SIEA consistently has average and maximum relative errors smaller

than 10% (Figure 5a). The maximum relative error of MC10K goes

up to 244% with seed set size |S | = 1. As observed in experiments

with large size seed sets, both SIEA and MC10K have similar error

rate with seed set size |S | = 10000.

In terms of running time, as the seed set size increases in powers

of ten, SIEA’s running time increases in much lower pace, e.g. few

hundreds of seconds, while MCϵ,δ consumes proportionally more

time (Figure 5b). Figure 5b also evaluates parallel implementation

of SIEA by varying number of CPU cores C = {1, 2, 4, 8, 16}. The

running time of SIEA reduces almost two times every time the

number of cores doubles con�rming the almost linear speedup.

Altogether, the parallel implementation of SIEA shows a linear

speedup behavior with respect to the number of cores used. On the

same network with size of seed sets linearly grows, SIEA requires

slightly more time to estimate in�uence spread while Monte-Carlo

shows a linear runtime requirement. Throughout the experiments,

SIEA always guarantees small error rate within ϵ .

6.5 In�uence Estimation under LT Model
We illustrate the generality of our algorithms in various di�usion

model by adapting SIEA for the LT model by only replacing IICP
with the sampling algorithm for the LT [17]. The algorithm is then

named SIEALT . The setting is similar to the case of IC. We present

the results of SIEALT compared with MC10K, MC100K, MCϵ,δ in

Table 6. INFEST is initially proposed for the IC model, thus, we

results for INFEST under the LT model are not available.

The results are mostly consistent with those observed under the

IC model. SIEALT obtains signi�cantly smaller errors and runs in

order of magnitudes faster than the counterparts. The results again

con�rm that the estimation quality of MC using 10K samples is not

good enough to be considered as gold-standard quality benchmark.

7 RELATEDWORK
In a seminal paper [17], Kempe et al. formulated and generalized two

important in�uence di�usion models, i.e. Independent Cascade (IC)

and Linear Threshold (LT). This work has motivated a large number

of follow-up researches on information di�usion [3, 6, 8, 18, 23, 29]

and applications in multiple disciplines [16, 19, 21]. Kempe et al. [17]

proved the monotonicity and submodularity properties of in�uence

as a function of sets of nodes. Later, Chen et al. [6] proved that

computing in�uence under these di�usion models is #P-hard.

Most existing works uses the naive in�uence cascade simulations

to estimate in�uences [6, 17, 21, 23]. Most recently, Lucier et al. [23]

proposed an estimation algorithm with rigorous quality guarantee

for a single seed set. The main idea is guessing a small interval of

size (1 + ϵ) that the true in�uence falls in and verifying whether

the guess is right with high probability. However, their approach

is not scalable due to a main drawback that the guessed intervals

are very small, thus, the number of guesses as well as veri�cations

made is huge. As a result, the method in [23] can only run for small

dataset and still takes hours to estimate a single seed set. They

also developed a distributed version on MapReduce however, graph

algorithms on MapReduce have various serious issues [14, 22].

In�uence estimation oracles are developed in [8, 29] which take

advantage of sketching the in�uence to preprocess the graph for

fast queries. Cohen et al. [8] use the novel bottom-k min-hash

sketch to build combined reachability sketches while Ohsaka et al.

in [29] adopt the reverse in�uence sketches. [29] also introduces the

reachability-true-based technique to deal with dynamic changes in

the graphs. However, these methods require days for preprocessing

in order to achieve fast responses for multiple queries.

There have also been increasing interests in many related pro-

blems. [5, 13] focus on designing data mining or machine learning

algorithms to extract in�uence cascade model parameters from real

datasets, e.g. action logs. In�uence Maximization, which �nds a

seed set of certain size with the maximum in�uence among those in

the same size, found many real-world applications and has attracted

a lot of research work [3, 6, 17, 21, 25, 27, 28, 31].

8 CONCLUSION
This paper investigates a new measure, called Outward In�uence,

for nodes’ in�uence in social networks. Outward in�uence inspi-

res new statiscal algorithms, namely Importance IC Polling (IICP)

and Robust Mean Estimation (RSA) to estimate in�uence of nodes

under various stochastic di�usion models. Under the popular IC

model, the IICP leads to an FPRAS for estimating outward in�uence

and SIEA to estimate in�uence spread. SIEA is Ω(log4(n)) times

faster than the most recent state-of-the-art and experimentally out-

perform the other methods by several orders of magnitudes. As

previous approaches to compute ground truth in�uence can result

in high error and long computational time, our algorithms provides

concrete and scalable tools to estimate ground-truth in�uence for

research on network cascade and social in�uence.
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Proof of Lemma 1
Recall that on a sampled graph д ∼ G, for a set S ⊆ V , we denote

r
(o)
д (S) to be the set of nodes, excluding the ones in S , that are

reachable from S through live edges in д, i.e. r
(o)
д (S) = rд(S)\S .

Alternatively, r
(o)
д (S) is called the outward in�uence cascade of S

on sample graph д and, consequently, we have,

Iout (S) =
∑
д∼G

|r
(o)
д (S)| Pr[д ∼ G]. (31)

It is su�cient to show that |r
(o)
д (S)| is submodular, as Iout (S) is

a linear combination of submodular functions. Consider a sample

graph д ∼ G, two sets S,T such that S ⊆ T ⊆ V and v ∈ V \T . We

have three possible cases:

• Case v ∈ r (o)д (S): then v ∈ r
(o)
д (T ) since S ⊆ T and v < T .

Thus, we have the following,

r
(o)
д (S ∪ {v}) − r

(o)
д (S)

= r
(o)
д (T ∪ {v}) − r

(o)
д (T ) = −1. (32)

• Case v < r (o)д (S) but v ∈ r
(o)
д (T ): We have that,

r
(o)
д (S ∪ {v}) − r

(o)
д (S)

= |r
(o)
д ({v})\(r

(o)
д (S) ∪ S)| ≥ 0, (33)

while r
(o)
д (T ∪ {v}) − r

(o)
д (T ) = −1. Thus,

r
(o)
д (S ∪ {v}) − r

(o)
д (S)

> r
(o)
д (T ∪ {v}) − r

(o)
д (T ). (34)

• Case v < r (o)д (T ): Since ∀u ∈ r (o)д (S) ∪ S , we have either

u ∈ r
(o)
д (T ) or u ∈ T or r

(o)
д (S) ∪ S ⊆ r

(o)
д (T ) ∪T , and thus,

r
(o)
д (S ∪ {v}) − r

(o)
д (S)

= |r
(o)
д ({v})\(r

(o)
д (S) ∪ S)|

≥ |r
(o)
д ({v})\(r

(o)
д (T ) ∪T )|

= r
(o)
д (T ∪ {v}) − r

(o)
д (T ). (35)

In all three cases, we have,

r
(o)
д (S ∪ {v}) − r

(o)
д (S)

≥ r
(o)
д (T ∪ {v}) − r

(o)
д (T ). (36)

Applying Eq. 36 on all possible д ∼ G and taking the sum over all

of these inequalities give∑
д∼G

(r
(o)
д (S ∪ {v}) − r

(o)
д (S)) Pr[д ∼ G]

≥
∑
д∼G

(r
(o)
д (T ∪ {v}) − r

(o)
д (T )) Pr[д ∼ G],

or,

Iout (S ∪ {v}) − Iout (S) ≥ Iout (T ∪ {v}) − Iout (T ). (37)

That completes the proof.
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Proof of Lemma 4
Let Ω+W be the probability space of all possible cascades from S .

For any cascadeW (S ) ⊇ S , the probability of that cascade in Ω+W is

given by

Pr[W (S ) ∈ Ω+W ] =
∑

д∈ΩG,д{W (S )

Pr[д ∈ ΩG],

where д { W (S ) means that W (S ) is the set of reachable nodes

from S in д.

Let ΩW be the probability space of non-trivial cascades. Accor-

ding to the Stage 1 in IICP, the probability of the trivial cascade is:

Pr[S ∈ ΩW ] = 0.

Comparing to the mass of cascades in Ω+W , the probability mass

of the trivial cascade S in ΩW is redistributed proportionally to

other cascades in ΩW . Speci�cally, according to line 2 in IICP, the

probability mass of all the non-trivial cascades in ΩW is multiplied

by a factor 1/β0. Thus,

Pr[W (S ) ∈ Ω+W ] = Pr[W (S ) ∈ ΩW ] · β0 ∀W (S ) , S .

It follows that

Iout (S) =
∑

W (S )∈Ω+W

|W (S ) \ S | · Pr[W (S ) ∈ Ω+W ] (38)

=
∑

W (S )∈ΩW

|W (S ) \ S | · Pr[W (S ) ∈ ΩW ]β0 (39)

= E[|W (S ) |] · β0 = E[Y
(S )] · β0. (40)

We note that forW (S ) = S , |W (S ) \ S | = 0. Thus the di�erence in

the probability masses between the two probabilistic spaces does

not a�ect the 2nd step.

Proof of Theorem 4.1
We will equivalently prove two probabilistic inequalities:

Pr[µ̂X < (1 − ϵ)µX ] ≤
δ

2

, (41)

and

Pr[µ̂X > (1 + ϵ)µX ] ≤
δ

2

. (42)

Prove Eq. 41. We �rst realize that at termination point of Alg. 2,

due to the stopping condition h =
∑T
j=1 X j ≥ ϒ and X j ≤ b,∀j, the

following inequalities hold,

ϒ ≤
T∑
j=1

X j ≤ ϒ + b . (43)

The left hand side of Eq. 41 is rewritten as follows,

Pr[µ̂X < (1 − ϵ)µX ] = Pr

[∑T
j=1 X j

T
< (1 − ϵ)µX

]
(44)

= Pr

[ T∑
j=1

X j < (1 − ϵ)µXT
]

(45)

≤ Pr[ϒ < (1 − ϵ)µXT ]. (46)

The last inequality is due to our realization in Eq. 43. Assume that

ϵ < 1 and µX > 0, let denote L1 = d
ϒ

(1−ϵ )µX
e. We then have,

L1 ≥
ϒ

(1 − ϵ)µX
⇒

ϒ

L1
≤ (1 − ϵ)µX , (47)

and

L1 >
ϒ

µX
> (2 +

2

3

ϵ) ln(
2

δ
)

1

ϵ ′2µX
(b − a). (48)

Thus, from Eq. 46, we obtain,

Pr[µ̂X < (1 − ϵ)µX ] ≤ Pr[L1 ≤ T ] = Pr

[ L1∑
j=1

X j ≤

T∑
j=1

X j

]
≤ Pr

[ L1∑
j=1

X j ≤ ϒ + b
]

(49)

≤ Pr

[∑L1
j=1 X j

L1
≤

ϒ + b

L1

]
, (50)

where the second inequality is due to Eq. 43. Note that

∑L
1

j=1 X j

L1 is

an estimate of µX using the �rst L1 random variables X1, . . . ,XL1 .

Furthermore, from Eq. 47 that
ϒ
L1 ≤ (1 − ϵ)µX , we have,

ϒ + b

L1
≤ (1 − ϵ)µX +

b

L1
= (1 − ϵ +

b

L1µX
)µX . (51)

Since L1 > (2 +
2

3
ϵ) ln( 2δ )

1

ϵ ′2µX
(b − a) from Eq. 48,

ϒ + b

L1
≤

(
1 − ϵ +

ϵ2b

(2 + 2

3
ϵ) ln( 2δ )(b − a)

)
µX = (1 − ϵ

′)µX . (52)

Plugging these into Eq. 50, we obtain,

Pr[µ̂X < (1 − ϵ)µX ] ≤ Pr

[ L1∑
j=1

X j ≤ (1 − ϵ
′)µX L1

]
. (53)

Now, apply the Cherno�-like bound in Eq. 23 withT = L1 and note

that L1 > (2 +
2

3
ϵ) ln( 2δ )

1

ϵ ′2µX
(b − a) > 2 ln( 2δ )

1

ϵ ′2µX
(b − a), we

achieve,

Pr[µ̂X < (1 − ϵ)µX ] ≤ exp

(
−
ϵ ′2L1µX
2(b − a)

)
(54)

≤ exp

(
−

ϵ ′22 ln( 2δ )
1

ϵ ′2µX
(b − a)

2(b − a)

)
=
δ

2

. (55)

That completes the proof of Eq. 41.

Prove Eq. 42. The left hand side of Eq. 42 is rewritten as follows,

Pr[µ̂X > (1 + ϵ)µX ] = Pr

[ T∑
j=1

X j > (1 + ϵ)µXT
]

(56)

≤ Pr[ϒ + b > (1 + ϵ)µXT ], (57)



Outward Influence and Cascade Size Estimation
in Billion-scale Networks SIGMETRICS ’17, June 05-09, 2017, Urbana-Champaign, IL, USA

where the last inequality is due to our observation that

∑T
j=1 X j ≤

ϒ + b. Under the same assumption that 0 < µX ≤
b

1+ϵ , we denote

L2 = b
ϒ+b
(1+ϵ )µX

c. We then have,

L2 ≥
ϒ

(1 + ϵ)µX
= (2 +

2

3

ϵ) ln(
2

δ
)

1

ϵ ′2µX
(b − a), (58)

and

L2 ≤
ϒ + b

(1 + ϵ)µX
⇒

ϒ + b

L2
≥ (1 + ϵ)µX (59)

⇒
ϒ

L2
≥ (1 + ϵ)µX −

b

L2
= (1 + ϵ −

b

L2µX
)µX (60)

⇒
ϒ

L2
≥

(
1 + ϵ −

ϵ2b

(2 + 2

3
ϵ) ln( 2δ )(b − a)

)
µX = (1 + ϵ

′)µX (61)

Thus, from Eq. 57, we obtain,

Pr[µ̂X >(1 + ϵ)µX ] ≤ Pr[L2 ≥ T ] = Pr

[ L2∑
j=1

X j ≥

T∑
j=1

X j

]
≤ Pr

[ L2∑
j=1

X j ≥ ϒ
]
= Pr

[∑L2
j=1 X j

L2
≥

ϒ

L2

]
(62)

≤ Pr

[∑L2
j=1 X j

L2
≥ (1 + ϵ ′)µX

]
(63)

where the last inequality follows from Eq. 61. By applying another

Cheno�-like bound from Eq. 22 combined with the lower bound

on L2 in Eq. 58, we achieve,

Pr[µ̂X > (1 + ϵ)µX ] ≤ exp

(
−

ϵ ′2L2µX

(2 + 2

3
ϵ)(b − a)

)
=
δ

2

, (64)

which completes the proof of Eq. 42.

Follow the same procedure as in the proof of Eq. 42, we obtain

the second statement in the theorem that,

Pr[T ≤ (1 + ϵ)ϒ/µX ] > 1 − δ/2, (65)

which completes the proof of the whole theorem.

More elaboration on the hold in [9]. The stopping rule algo-

rithm in [9] is described in Alg. 6.

Algorithm 6: Stopping Rule Algorithm [9]

Input: Random variables X1, X2, . . . and 0 < ϵ, δ < 1

Output: An (ϵ, δ )-approximate of µX = E[Xi ]
1 Compute: ϒ1 = 1 + (1 + ϵ )4(e − 2) ln( 2δ )

1

ϵ 2
;

2 Initialize h = 0, T = 0;

3 while h < ϒ1 do
4 h ← h + XT , T ← T + 1;

5 return µ̂X = ϒ1/T ;

The algorithm �rst computes ϒ1 and then, generates samples X j
until the sum of their outcomes exceed ϒ1. Afterwards, it returns

ϒ1/T as the estimate. Apparently, ϒ1/T is a biased estimate of µX
since

∑T
j=1 X j ≥ ϒ1.

An important realization for this algorithm from our proof of

Theorem 4.1 is that ϒ1 ≤
∑T
j=1 X j ≤ ϒ1 + b with b = 1 for [0, 1]

random variables. In section 5 of [9], following the proof of Pr[µ̂X >
(1 + ϵ)µX ] ≤ δ/2 to prove Pr[µ̂X < (1 − ϵ)µX ] ≤ δ/2, there is step

that derives as follows: Pr[L1 ≤ T ] = Pr

[∑L1
j=1 X j ≤

∑T
j=1 X j

]
=

Pr

[∑L1
j=1 X j ≤ ϒ1

]
whereL1 is a prede�ned number, i.e.L1 = b

ϒ1
(1−ϵ )µX

c.

However, since ϒ1 ≤
∑T
j=1 X j ≤ ϒ1 + b, the last equality does not

hold. This is based on Eq. 49 with the correct expression being

Pr

[ ∑L1
j=1 X j ≤ ϒ + b

]
instead of Pr

[ ∑L1
j=1 X j ≤ ϒ

]
.

Proof of Theorem 4.2
[Proof of Part (1)] If ϵ ≥ 1/4, then RSA only runs GSRA and hence,

from Theorem 4.1, the returned solution satis�es the precision

requirement. Otherwise, since the �rst steps is literally applying

GSRA with

√
ϵ < 1/2,δ/3, we have,

Pr[µX (1 −
√
ϵ) ≤ µ̂ ′X ≤ µX (1 +

√
ϵ)] ≥ 1 − δ/3 (66)

We prove that in step 2, ρ̂X ≥ ρX /2. Let de�ne the random vari-

ables ξi = (X
′
2i−1 − X

′
2i )

2/2, i = 1, 2, . . . and thus, E[ξi ] = Var[X ].
Consider the following two cases.

(1) If Var[X ] ≥ ϵµX (b − a), consider two sub-cases:

(a) If Var[X ] ≥ 2(1 −
√
ϵ)ϵµX (b − a), then since Nσ =

ϒ2ϵ/µ̂
′
X ≥

2

1−
√
ϵ
(1+ ln( 3

2
)/ln( 2δ ))ϒϵ/µX , applying the

Cherno�-like bound in Eq. 21 gives,

Pr[Var[X ]/2 ≤ ∆/Nσ ] ≥ 1 − δ/3 (67)

Thus, ρ̂X ≥ Var[X ]/2 = ρX /2 with a probability of at

least 1 − δ/3.

(b) If Var[X ] ≤ 2(1 −
√
ϵ)ϵµX (b − a), then ϵµX (b − a) ≥

Var[X ]/(2(1−
√
ϵ)) and therefore, ρ̂X ≥ ϵµ̂

′
X (b −a) ≥

(1 −
√
ϵ)ϵµX (b − a) ≥ VarX /2 = ρX /2.

(2) If Var[X ] ≤ ϵµX (b − a), it follows that ρ̂X ≥ ϵ µ̂X ≥
ρX (1 −min{

√
ϵ, 1/2}) with probability at least 1 − δ/3.

Thus, after steps 1 and 2, 2
1+
√
ϵ

1−
√
ϵ
ρ̂X /µ̂

′2
X ≥ ρX /µ

2

Z with probability

at least 1 − δ/3. In step 3, since T = ϒ2ρ̂X /(µ̂
′2
X (b − a)) ≥ (1 +

ln( 3
2
)/ln( 2δ ))ϒρX /(µ

2

X (b − a)) and hence, applying the Cherno�-

like bound in Eq. 24 again gives,

Pr[µX (1 − ϵ) ≤ µ̂X ≤ µX (1 + ϵ)] ≥ 1 − 2δ/3. (68)

Accumulating the probabilities, we �nally obtain,

Pr[µX (1 − ϵ) ≤ µ̂X ≤ µX (1 + ϵ)] ≥ 1 − δ , (69)

This completes the proof of part (1).

[Proof of Part (2)] The RSA algorithm may fail to terminate after

using O(ϒρX /(µ
2

X (b − a))) samples if either:

(1) TheGSRA algorithm fails to return an (
√
ϵ,δ/3)-approximate

µ̂ ′X with probability at most δ/2, or,

(2) In step 2, for Var[X ] ≤ 2(1 −
√
ϵ)ϵµX (b − a), ρ̂X is not

O(ϵµX (b − a)) with probability at most δ/2.

From Theorem 4.1, withT = (1+ϵ)ϒ/µX = O(ϒρX /(µ
2

X (b−a))),
the �rst case happens with probability at most δ/2. In addition, we

can show similarly to Theorem 4.1 that if Var[X ] ≤ 2ϵµX (b − a),
then,

Pr[∆/T ≥ 4ϵµX (b − a)] ≤ exp(−TϵµX (b − a)/2). (70)

Thus, for T ≥ 2ϒϵ/µX , we have Pr[∆/T ≥ 4ϵµX ] ≤ δ/2.
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Proof of Lemma 6
We start with the computation ofVar[Z (S )]with a note thatE[Z (S )] =
I(S),

Var[Z (S )] =

(n−|S |)β0+ |S |∑
z=β0+ |S |

(z − E[Z (S )])2 Pr[Z (S ) = z]

=

n−|S |∑
y=1
(yβ0 + |S | − I(S))

2
Pr[Y (S ) = y]

=

n−|S |∑
y=1
(yβ0 − Iout (S)β0 + Iout (S)β0 + |S | − I(S))

2
Pr[Y (S ) = y]

= β2
0

n−|S |∑
y=1
(y − Iout (S))

2
Pr[Y (S ) = y]

+

n−|S |∑
y=1
(Iout (S)β0 + |S | − I(S))

2
Pr[Y (S ) = y]

+ 2β0

n−|S |∑
y=1
(y − Iout (S))(Iout (S)β0 + |S | − I(S)) Pr[Y

(S ) = y]

Since Y (S ) ≥ 1 and Pr[Y (S ) = y] =
Pr[M (S )=y+ |S |]

β0
, we have,

n−|S |∑
y=1
(y − Iout (S))

2
Pr[Y (S ) = y]

=
1

β0

n∑
m=1+ |S |

(m − E[M(S )])2 Pr[M(S ) =m]

=
1

β0

n∑
m= |S |

(m − E[M(S )])2 Pr[M(S ) =m] −
1

β0
I2out (S)(1 − β0)

=
1

β0
(Var[M(S )] − I2out (S)(1 − β0)), (71)

and,

n−|S |∑
y=1

β0(y − Iout (S))(Iout (S)β0 + |S | − I(S)) Pr[Y
(S ) = y]

= (Iout (S)β0 + |S | − I(S))

n−|S |∑
y=1
(y − Iout (S)) Pr[Y

(S ) = y]

= (Iout (S)β0 + |S | − I(S))Iout (S)(1/β0 − 1). (72)

Plug these back in the Var[Z (S )], we obtain,

Var[Z (S )] = β0(Var[M
(S )] − I2out (S)(1 − β0))

+ (Iout (S)β0 + |S | − I(S))
2

+ 2β0(Iout (S)β0 + |S | − I(S))Iout (S)(1/β0 − 1)

= β0 · Var[M
(S )] − (1 − β0)I

2

out (S) (73)

That completes the computation.
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