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ABSTRACT

This work addresses the fundamental problem of distinguish-
ing between a driver and passenger using a mobile phone,
which is the critical input to enable numerous safety and
interface enhancements. Our detection system leverages the
existing car stereo infrastructure, in particular, the speak-
ers and Bluetooth network. Our acoustic approach has the
phone send a series of customized high frequency beeps via
the car stereo. The beeps are spaced in time across the
left, right, and if available, front and rear speakers. Af-
ter sampling the beeps, we use a sequential change-point
detection scheme to time their arrival, and then use a dif-
ferential approach to estimate the phone’s distance from the
car’s center. From these differences a passenger or driver
classification can be made. To validate our approach, we
experimented with two kinds of phones and in two differ-
ent cars. We found that our customized beeps were imper-
ceptible to most users, yet still playable and recordable in
both cars. Our customized beeps were also robust to back-
ground sounds such as music and wind, and we found the
signal processing did not require excessive computational re-
sources. In spite of the cars’ heavy multi-path environment,
our approach had a classification accuracy of over 90%, and
around 95% with some calibrations. We also found we have
a low false positive rate, on the order of a few percent.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed Applications; C.3 [Special-Purpose
and Application-based Systems]: Real-time and embed-
ded systems; H.5 [Information Interfaces and Presen-
tation(e.g., HCI)]: Sound and Music Computing

General Terms

Design, Experimentation, Measurement, Algorithms, Per-
formance
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1. INTRODUCTION
Distinguishing driver and passenger phone use is a build-

ing block for a variety of applications but it’s greatest promise
arguably lies in helping reduce driver distraction. Cell phone
distractions have been a factor in high-profile accidents [9]
and are associated with a large number of automobile acci-
dents. For example a National Highway Traffic Safety Ad-
ministration study identified cell phone distraction as a fac-
tor in crashes that led to 995 fatalities and 24,000 injuries
in 2009 [40]. This has led to increasing public attention [8,
39] and the banning of handheld phone use in several US
states [4] as well as many countries around the world [1].

Unfortunately, an increasing amount of research suggests
that the safety benefits of handsfree phone operation are
marginal at best [16, 38]. The cognitive load of conducting
a cell phone conversation seems to increase accident risk,
rather than the holding of a phone to the ear. Of course,
texting, email, navigation, games, and many other apps on
smartphones are also increasingly competing with driver at-
tention and pose additional dangers. This has led to a re-
newed search for technical approaches to the driver distrac-
tion problem. Such approaches run the gamut from im-
proved driving mode user interfaces, which allow quicker ac-
cess to navigation and other functions commonly used while
driving, to apps that actively prevent phone calls. In be-
tween these extremes lie more subtle approaches: routing
incoming calls to voicemail or delaying incoming text noti-
fications, as also recently advocated by Lindqvist et al. [27].

The Driver-Passenger Challenge. All of these ap-
plications would benefit from and some of them depend on
automated mechanisms for determining when a cell phone
is used by a driver. Prior research and development has
led to a number of techniques that can determine whether
a cell phone is in a moving vehicle—for example, based on
cell phone handoffs [22], cell phone signal strength analy-
sis [18], or speed as measured by a Global Positioning Sys-
tem receiver. The latter approach appears to be the most
common among apps that block incoming or outgoing calls
and texts [10, 11, 3]. That is, the apps determine that
the cell phone is in a vehicle and activate blocking poli-
cies once speed crosses a threshold. Some apps (e.g,. [6]) re-
quire the installation of specialized equipment in an automo-
bile’s steering column, which then allows blocking calls/text



to/from a given phone based on car’s speedometer readings,
or even rely on a radio jammer [5]. None of these solutions,
however, can automatically distinguish a driver’s cell phone
from a passenger’s.

While we have not found any detailed statistics on driver
versus passenger cell phone use in vehicles, a federal acci-
dent database (FARS) [7] reveals that about 38% of automo-
bile trips include passengers1. Not every passenger carries
a phone—still this number suggests that the false positive
rate when relying only on vehicle detection would be quite
high. It would probably unacceptably high even for simple
interventions such as routing incoming calls to voicemail.
Distinguishing drivers and passengers is challenging because
car and phone usage patterns can differ substantially. Some
might carry a phone in a pocket, while others place it on the
vehicle console. Since many vehicles are driven mostly by
the same driver, one promising approach might be to place
a Bluetooth device into the vehicles, which allows the phone
to recognize it through the Bluetooth identifier. Still, this
cannot cover cases where one person uses the same vehicle
as both driver and passenger, as is frequently the case for
family cars. Also, some vehicle occupants might pass their
phone to others, to allow them to try out a game, for exam-
ple.

An Acoustic Ranging Approach. In this paper, we
introduce and evaluate an acoustic relative-ranging system
that classifies on which car seat a phone is being used. The
system relies on the assumptions (i) that seat location is one
of the most useful discriminators for distinguishing driver
and passenger cell phone use and (ii) that most cars will
allow phone access to the car audio infrastructure. Indeed,
an industry report [36] discloses that more than 8 million
built-in Bluetooth systems were sold in 2010 and predicts
that 90% of new cars will be equipped in 2016. Our sys-
tem leverages this Bluetooth access to the audio infrastruc-
ture to avoid the need to deploy additional infrastructure
in cars. Our classifier’s strategy first uses high frequency
beeps sent from a smartphone over a Bluetooth connection
through the car’s stereo system. The beeps are recorded
by the phone, and then analyzed to deduce the timing dif-
ferentials between the left and right speakers (and if possi-
ble, front and rear ones). From the timing differentials, the
phone can self-determine which side or quadrant of the car
it is in. While acoustic localization and ranging have been
extensively studied for human speaker localization through
microphone arrays, we focus on addressing several unique
challenges presented in this system. First, our system uses
only a single microphone and multiple speakers, requiring
a solution that minimizes interference between the speak-
ers. Second, the small confined space inside a car presents
a particularly challenging multipath environment. Third,
any sounds emitted should be unobtrusive to minimize dis-
traction. Salient features of our solution that address these
challenges are:

• By exploiting the relatively controlled, symmetric po-
sitioning of speakers inside a car, the system can per-
form seat classification even without the need for cali-
bration, fingerprinting or additional infrastructure.

• To make our approach unobtrusive, we use very high

1Based on 2 door and 4 door passenger vehicles in 2009.
The database only includes vehicle trips ending in a fatal
accident, thus it may not be fully representative of all trips.

frequency beeps, close to the limits of human percep-
tion, at about 18 kHz. Both the number and length
of the beeps are relatively short. This exploits that
today’s cell phone microphones and speakers have a
wider frequency response than most peoples’ auditory
system.

• To address significant multipath and noise in the car
environment, we use several signal processing steps
including bandpass filtering to remove low-frequency
noise. Since the first arriving signal is least likely to
stem from multipath, we use a sequential change-point
detection technique that can quickly identify the start
of this first signal.

By relaxing the problem from full localization to classifi-
cation of whether the phone is in a driver or passenger seat
area, we enable a first generation system through a smart-
phone app that is practical today in all cars with built-in
Bluetooth (provided the phone can connect). This is because
left-right classification can be achieved with only stereo au-
dio, and this covers the majority of scenarios (except when
the phone is located in the driver-side rear passenger seat,
which is occupied in less than 9% of vehicle trips according to
FARS). We also show how accuracy can be substantially im-
proved when Bluetooth control over surround sound audio
becomes available, or car audio systems provide the func-
tion to generate the audio beeps themselves. Given that
high-end vehicles are already equipped with sophisticated
surround sound systems and more than 15 speakers [2], it is
likely that such control will eventually become available.

To validate our approach and demonstrate its generality,
we conducted experiments on 2 types of phones in 2 different
cars. The results show that audio files played through the
car’s existing Bluetooth personal area network have suffi-
cient fidelity to extract the timing differentials needed. Our
prototype implementation also shows that the Android De-
veloper Phone has adequate computational capabilities to
perform the signal processing needed in a standard program-
ming environment.

2. RELATED WORK
There are active efforts in developing driver distraction

detection systems and systems that help managing interupt-
ability caused by hand-held devices. Approaches involving
wearing special equipment when driving to detect driver dis-
traction have been developed [14]. Further, Kutila et al. [25]
proposed a camera vision system. While the system is more
suitable for in-vehicle environments comparing to its prede-
cessors, it did not take the presence of hand-held devices into
account. The adverse effects of using a phone on driver’s be-
havior have been identified [35]. With the increasing number
of automobile accidents involved driver cell phone use, more
recent contributions are made in the area of reducing driver
distraction by allowing mobile users handling their devices
with less effort while driving. These systems include Quiet
Calls [29], Blind Sight [26], Negotiator [41], and Lindqvist’s
systems [27]. They assumed context information of the de-
vice and prior knowledge of the phone use by the driver.
Our work is different in that we address the fundamental
problem of detecting the driver phone use, which can enable
numerous safety and interface applications.

Turning to acoustic positioning techniques, Beepbeep [31]
proposed an acoustic-based ranging system that can achieve



1 or 2 cm accuracy within a range of 10 meters, which is so
far the best result of ranging using off-the-shelf cell phones.
It requires application-level communication between two rang-
ing devices. However, in our in-car environment, the head
unit is not programmable and only mobile phones are pro-
grammable. Cricket [32] and Bat system [23] employed spe-
cially designed hardware to compute time difference of ar-
rival or time-of-flight of ultrasonic signal to achieve an ac-
curacy up to several centimeters. ENSBox [21] integrated
an ARM processor running Linux to provide high precision
clock synchronization for acoustic ranging and achieved an
average accuracy of 5 centimeters. WALRUS [15] used the
Wi-Fi network and ultrasound to determine location of the
mobile devices to room-level accuracy. Sallai et al. [34] eval-
uated acoustic ranging in resource constrained sensor net-
works by estimating the time-of-flight as the difference of
the arrival times of the sound and radio signals.

Toward speaker localization for in-car environment, both
Swerdlow [12] and Hu [24] proposed to detect the speaker’s
location inside a car using the microphone array. Rodriguez-
Ascariz et al. [33] developed a system for detecting driver
use of mobile phones using specialized rectenna. These ap-
proaches either require additional hardware infrastructure or
involve expensive computation, making them less attractive
when distinguishing driver and passenger phone use. Our
system leverages the existing car stereo infrastructure to lo-
cate smartphones by exploiting only a single microphone and
multiple speakers. Our approach is designed to be unob-
trusive and computationally feasible on off-the-shelf smart-
phones. A key contribution is its robustness under heavy
multipath and noisy in-car environments.

3. SYSTEM DESIGN
To address the driver-passenger challenge, we introduce

an acoustic ranging technique that leverages the existing
car audio infrastructure. In this section, we discuss in detail
design goals, the ranging approach, and the beep design.
And in the following section we present beep signal detection
and location classification.

3.1 Challenges and Design Goals
The key goal that led to our acoustic approach was to be

able to determine seat location without the need to add ded-
icated infrastructure to the car. In many cars, the speaker
system is already accessible over Bluetooth connections and
such systems can be expected to trickle down to most new
cars over the next few years. This allows a pure phone soft-
ware solution. The acoustic approach leads, however, to
several additional challenges:

Unobtrusiveness. The sounds emitted by the system should
not be perceptible to the human ear, so that it does
not annoy or distract the vehicle occupants.

Robustness to Noise and Multipath. Engine noise, tire
and road noise, wind noise, and music or conversations
all contribute to a relatively noisy in-car environment.
A car is also a relatively small confined space creating
a challenging heavy multipath scenario. The acoustic
techniques must be robust to these distortions.

Computational Feasibility on Smartphones. Standard
smartphone platforms should be able to execute the

Figure 1: Illustration of the logical flow in our sys-
tem.

signal processing and detection algorithms with sub-
second runtimes.

3.2 Acoustic Ranging Overview
The key idea underlying our driver phone use detection

system is to perform relative ranging with the car speakers.
As illustrated in figure 1, the system, when triggered, say,
by an incoming phone call, transmits an audio signal via
Bluetooth to the car head unit. This signal is then played
through the car speakers. The phone records the emitted
sound through its microphone and processes this recorded
signal to evaluate propagation delay. Rather than measur-
ing absolute delay, which is affected by unknown processing
delays on the phone and in the head unit, the system mea-
sures relative delay between the signal from the left and right
speaker(s). This is similar in spirit to time-difference-of-
arrival localization and does not require clock synchroniza-
tion. Note, however, that the system does not necessarily
perform full localization.

In virtually all cars, the speakers are placed so that the
plane equidistant to the left and right (front) speaker loca-
tions separates the driver-side and passenger-side area. This
has two benefits. First, for front seats (the most frequently
occupied seats), the system can distinguish driver seat and
passenger seat by measuring only the relative time differ-
ence between the front speakers. Second, the system does
not require any fingerprinting or calibration since a time
difference of zero always indicates that the phone is located
between driver and passenger (on the center console). For
these reasons, we refer to this approach as relative ranging.

This basic two-channel approach is practical with current
handsfree and A2DP Bluetooth profiles which provide for
stereo audio. The concept can be easily extended to four-
channel, which promises better accuracy but would require
updated surround sound head units and Bluetooth profiles.
We will consider both the two and four channel options
throughout the remainder of the paper.

Our system differs from typical acoustic human speaker
localization, in that we use a single microphone and multi-
ple sound sources rather than a microphone array to detect
a single sound source. This means that time differences only
need to be measured between signals arriving at the same
microphone. This time difference can be estimated simply
by counting the number of audio samples between the two
beeps. Most modern smartphones offer an audio sampling
frequency of 44.1 kHz, which given the speed of sound theo-
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Figure 2: Relative ranging when applied to a
speaker pair i and j, for example front-left and front-
right.

retically provides an accuracy of about 0.8 cm–the resolution
under ideal situation, since the signal will be distorted .

Our multi-source approach also raises two new issues, how-
ever. First, we have to ensure that the signals from different
speakers do not interfere. Second, we need to be able to
distinguish the signals emitted from the different speakers.
We address both through a time-division multiplexing ap-
proach. We let speakers emit sounds at different points in
time, with a sufficiently large gap that no interference occurs
in the confined in-vehicle space. Since the order of speakers
is known to the phone, it can also easily assign the received
sounds to the respective speakers.

Figure 2 illustrates relative ranging approach for any two
speakers i and j, for example, front-left and front-right. As-
sume the fixed time interval between two emitted sounds
by a speaker pair i and j is ∆tij . Let ∆t′ij be the time
difference when the microphone records these sounds. The
time difference of signal from ith and jth speaks arriving at
phone is defined as

∆(Tji) = ∆t′ij − ∆tij , i 6= j i, j = 1, 2, 3, 4. (1)

Had the microphone been equidistant from these two speak-
ers, we would have ∆(Tji) = 0. If ∆(Tji) < 0, the phone is
closer to the ith speaker and if ∆(Tji) > 0, it is closer to the
jth speaker.

In our system, the absolute time the sounds emitted by
speakers are unknown to the phone, but the phone does
know the time difference ∆tij . Similarly, the absolute times
the phone records the sounds might be affected by phone
processing delays, but the difference ∆t′ij can be easily cal-
culated using the sample counting. As can be seen, from
the equations above, these two differences are sufficient to
determine which speaker is closer.

3.3 Beep Signal Design
In designing the beep sound played through the car speak-

ers, we primarily consider two challenges: background noise
and unobtrusiveness.

Frequency Selection. We choose a high frequency beep
at the edge of the phone microphone frequency response
curve, since this makes it both easier to filter out noise and
renders the signal imperceptible for most, if not all, people.
The majority of the typical car noise sources are in lower
frequency bands. For example, the noise from the engine,
tire/road, and wind are mainly located in the low frequency
bands below 1 kHz [17], whereas conversation ranges from
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Figure 3: Frequency sensitivity comparison between
the human ear and smartphone.

approximately 300 Hz to 3400 Hz [37]. Music has a wider
range, the FM radio for example spans a frequency range
from 50 Hz to 15,000 Hz, which covers almost all naturally
occurring sounds. Although separating noise can be difficult
in the time domain, we enable straightforward separation in
the frequency domain by locating our signal above 15 kHz.

Such high-frequency sounds are also hard to perceive by
the human auditory system. Although the frequency range
of human hearing is generally considered to be 20 Hz to 20
kHz [20], high frequency sounds must be much louder to
be noticeable. This is characterized by the absolute thresh-
old of hearing (ATH), which refers to the minimum sound
pressure that can be perceived in a quiet environment. Fig-
ure 3(a) shows how the ATH varies over frequency, as given
in [19]. Note, how the threshold of hearing increases sharply
for frequencies over 10 kHz and how human hearing becomes
extremely insensitive to frequencies beyond 18 kHz. For ex-
ample, human ears can detect sounds as low as 0 dB sound
pressure level (SPL) at 1 kHz, but require about 80 dB SPL
beyond 18 kHz—a 10,000 fold amplitude increase.

Fortunately, the current cell phone microphones are more
sensitive to this high-frequency range. We experimented
with an iPhone 3G and an Android Developer Phone 2
(ADP2), and plotted their corresponding frequency response
curves in Figure 3(b). Although the frequency response also
falls off in the high frequency band it is still able to pick
up sounds in a wider range than most human ears. We
therefore choose frequencies in this high range. Since our
frequency response experiments in Figure 3(b) show notice-
able difference among phones beyond 18kHz, we chose both
the 16-18kHz range on the ADP2 phone and the 18-20kHz
range on the iPhone 3G for our experiments. Energy is uni-
formly distributed over the entire range.

Length. The length of the beep impacts the overall de-
tection time as well as the reliability of recording the beep.
Too short a beep is not picked up by the microphone. Too
long a beep, will add delay to the system and will be more
susceptible to multi-path distortions. We found empirically
that a beep length of 400 samples (i.e., 10 ms) represents a
good tradeoff.

4. DETECTION ALGORITHM
Realizing our approach requires four sub-tasks: Filtering,
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Signal Detection, Relative Ranging and Location Classifica-
tion. These correspond to the same parts the algorithm
shown in Figure 4.

To classify the phone’s location, the specially designed
beeps, stored in files, are transmitted to the head-unit and
played via the car’s speakers. Just before the beeps are
transmitted, the microphone is turned on and starts record-
ing. The recorded sound is bandpass filtered around the
frequency band of the beep using a short-time Fourier trans-
form (STFT) to remove most background noise. Next, as
shown in Figure 4, a signal detection algorithm is applied.
After each beep sound is detected, its start time is noted and
relative ranging is performed to obtain the time difference
between the two speakers. Given a constant sampling fre-
quency and known speed of sound, the corresponding phys-
ical distance is easy to compute. Finally, location classifica-
tion determines the position of the phone in car. We next
describe the two most important tasks, beep signal detection
and ranging and location classification, in detail.

4.1 Detecting Beep Arrival Time
Detecting the beep signal arrival under heavy multipath

in-car environments is challenging because the beeps can
be distorted due to interference from the multipath compo-
nents. In particular, the commonly used correlation tech-
nique, which detects the point of maximum correlation be-
tween a received signal and a known transmitted signal, is
susceptible to such distortions [31]. Furthermore, the use of
a high frequency beep signal can lead to distortions due to
the reduced microphone sensitivity in this range.

For these reasons, we adopt a different approach where we
simply detect the first strong signal in our frequency band.
This is possible since there is relatively little noise and inter-
ference from outside sources in our chosen frequency range.
This is known as sequential change-point detection in sig-
nal processing. The basic idea is to identify the first ar-
riving signal that deviates from the noise after filtering out
background noise [13]. Let {X1, ..., Xn} be a sequence of
recorded audio signal by the mobile phone over n time point.
Initially, without the beep, the observed signal comes from
noise, which follows a distribution with density function p0.

Later on, at an unknown time τ , the distribution changes
to density function p1 due to the transmission of beep sig-
nal. Our objective is to identify this time τ , and to declare
the presence of a beep as quickly as possible to maintain
the shortest possible detection delay, which corresponds to
ranging accuracy.

To identify τ , we can formulate the problem as sequential
change-point detection. In particular, at each time point
t, we want to know whether there is a beep signal present
and, if so, when the beep signal is present. Since the al-
gorithm runs online, the beep may not yet have occurred.
Thus, based on the observed sequence up to time point t
{X1, ..., Xt}, we distinguish the following two hypotheses
and identify τ :

H0 : Xi follows p0, i = 1, ..t,

H1 :

{

Xi follows p0, i = 1, .., τ − 1,

Xi follows p1, i = τ, ..., t.

If H0 is true, the algorithm repeats once more data samples
are available. If the observed signal sequence {X1, ..., Xt}
includes one beep sound recorded by the microphone, the
procedure will reject H0 with the stopping time td, at which
the presence of the beep signal is declared. A false alarm is
raised whenever the detection is declared before the change
occurs, i.e., when td < τ . If td ≥ τ , then (td − τ ) is the
detection delay, which represents the ranging accuracy.

Sequential change-point detection requires that the sig-
nal distribution for both noise and the beep is known. This
is difficult because the distribution of the beep signal fre-
quently changes due to multipath distortions. Thus, rather
than trying to estimate this distribution, we use the cumula-
tive sum of difference to the averaged noise level. This allows
first arriving signal detection without knowing the distribu-
tion of the first arriving signal. Suppose the cell phone es-
timates the mean value µ of noise starting at time t0 until
t1, which is the time that the phone starts transmitting the
beep. We want to detect the first arriving signal as the sig-
nal that significantly deviates from the noise in the absence
of the distribution of the first arriving signal. Therefore, the
likelihood that the observed signal Xi is from the beep can
be approximated as

l(Xi) = (Xi − µ), (2)

given that the recorded beep signal is stronger than the
noise. The likelihood l(Xi) shows a negative drift if the ob-
served signal Xi is smaller than the mean value of the noise,
and a positive drift after the presence of the beep, i.e., Xi

stronger than the noise. The stopping time for detecting the
presence of the beep is given by

td = inf(k|sk ≥ h), satisfy sm ≥ h, m = k, .., k + W, (3)

where h is the threshold, W is the robust window used to
reduce the false alarm, and sk is the metric for the observed
signal sequence {X1, ..., Xk}, which can be calculated recur-
sively:

sk = max{sk−1 + l(Xk), 0}, (4)

with s0 = 0.
Figure 5 shows an illustration of the first arriving signal

detection by using our system prototype. The upper plot
shows the observed signal energy along time series and the
lower plot shows the cumulated sum of the observed signal.
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Figure 5: An illustration of detecting the first arriv-
ing signal using our system prototype. The upper
plot shows the observed signal energy along time se-
ries and the lower plot shows the cumulative sum of
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Our approach of cumulative sum of difference to the aver-
aged noise level is inspired by Page’s cumulative sum (CUSUM)
procedure [30], which was shown to minimize average detec-
tion delay when both p0 and p1 are known a priori. Al-
though the CUSUM algorithm can be generalized as GLR
(generalize likelihood ratio) [28] without knowing the dis-
tribution of signal, the high computational complexity and
large detection delay of GLR make it infeasible in our sys-
tem design, which requires efficient computation on mobile
devices and high accuracy.

Prototype Considerations. In our system implemen-
tation, we empirically set the threshold as the mean value of
sk plus three standard deviations of sk when k belongs to t0
to t1 (i.e., 99.7% confidence level of noise). The window W
is used to filter out outliers in the cumulative sum sequence
due to any sudden change of the noise. We set W = 40 in
our implementation. At the time point that the phone starts
to emit the beep sound, our algorithm starts to process the
recorded signal sequences. Once the first arriving signal of
the first beep is detected, we shifts the precessing window
to the approximated time point of the next beep since we
know the fixed interval between two adjacent beeps.

4.2 Ranging and Location Classification
After the first arriving time of the beeps are detected,

the system first calculates the time difference ∆Tij =
Sij

f

between the speakers. Here Sij is the number of samples
that the beeps were apart and f is the sampling frequency
(typically 44.1kHz). In a two-channel system, i and j are
simply the left speaker (speaker 1) and the right speaker
(speaker 2).

The distance difference from the phone to two speakers
can be calculated as:

∆dij = c · ∆Tij , (5)

where i and j represent the ith and jth speakers in Figure 1
and c is the speed of the sound.

In a two-channel system, the driver-side can then be iden-
tified based on the following condition.

∆d12 > THlr, (6)

Here, THlr is a threshold that could be chosen as zero, but
since drivers are often more likely to place their phone in the
car’s center console, it often makes sense to assign a negative
value of about 5cm.

In a four-channel system, we can first use two pairs of left
speakers and right speakers to classify whether the mobile
phone is located in the front or back seats. Given a threshold
THfb, the mobile phone is classified as in the front seat if

(∆d13 + ∆d24)/2 > THfb, (7)

where ∆d13 represent the distance difference from two left
side speakers and ∆d24 is the distance difference from two
right speakers. If the phone is in the front, it will then use
the same condition as before to discriminate driver side and
passenger side. If the system is in the back, it would use
∆d34 instead, since the rear speakers are closer.

In order to improve the reliability of the measured dis-
tance difference, the median distance difference measured
from multiple runs is applied. In our implementation, we
used four runs, which is robust up to two outliers. There-
fore, there is four beeps in each channel and it takes one
second to emit all beeps for two-channel and about two sec-
onds for four-channel systems.

5. EVALUATION
We have experimented with this technique in two different

cars and on two different phones to evaluate driver-passenger
classification accuracy. We also studied how our algorithm
compares to correlation-based methods and measured the
runtime on the Android Developer Phone 2 platform. The
following subsections detail the methodology and results.

5.1 Experimental Methodology
Phones and Cars. We conducted our experiments with

the Android Developer Phone 2 (Phone I) and the iPhone 3G
(Phone II). Both phones have a Bluetooth radio and support
16-bit 44.1 kHz sampling from the microphone. The iPhone
3G is equipped with a 256MB RAM and a 600 MHz ARM
Cortex A8 processor, while the ADP2 equipped with 192
MB RAM and the slower 528MHz MSM7200A processor.

We created four beep audio files in MATLAB for the two
phones, each with 4 beeps for each channel in car’s stereo
system. Two of these are for two channel operation (one
for each phone) and the other two files are designed for four
channel operation. To create these files, we first generated
a single beep by creating uniformly distributed white noise
and then bandpass filtered it to the 16-18kHz for Phone I and
18-20kHz band for Phone II. We then replicated this beep
4 times with a fixed interval of 5,000 samples between each
beep so as to avoid interference from two adjacent beeps.
This 4 beep sequence is then stored first in the left channel
of the stereo file and after a 10,000 sample gap repeated on
the right channel of the file.

The accuracy results presented here were obtained while
transmitting this audio file from a laptop to the car’s head
unit via Bluetooth Advanced Audio Distribution and record-
ing it back on one of the phones using an audio recorder ap-
plication for offline analysis. We subsequently also created
an Android prototype implementation that simultaneously
streams A2DP audio and records audio from the microphone
to confirm feasibility.

We experimented in a Honda Civic Si Coupe (Car I) and
an Acura sedan (Car II). Both cars have two front speakers
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Figure 6: Illustration of testing positions in Phone I

Car I scenario and driver’s control area.

located at two front doors’ lower front sides, and two rear
speakers in the rear deck. The interior dimensions of Car
I are about 175cm (width) by 183cm (length) and about
185cm by 203cm for Car II.

Since both cars are equipped with the two-channel stereo
system, the four channel sound system is simulated by using
the headunit’s fader system. Specifically, we encode a two
channel beep sound and play the two channel beep sound
first at two front speakers while muting the rear speakers, we
then play the two channel beep sound at two rear speakers
while muting the front speakers.

Experimental Scenarios. We conducted experiments
where we placed a phone in various positions that we believe
are commonly used. We also varied the number of passen-
gers and the amount and type of background noise. Due to
safety reasons (experiments require manual intervention and
changing phone positions can be difficult), we restricted the
number of experiments while driving and conducted more
exhaustive testing in a stationary setting.

We organized our experiments in three representative sce-
narios:

Phone I, Car I : This set of experiments uses the Android
Developer Phone 2 in the Honda Civic while stationary.
Background noises stem from conversation and an idling en-
gine. As illustrated in Figure 6, we placed the phone in nine
different locations: Driver’s left pant pocket (A), driver’s
right pant pocket (B), a cupholder on the center console
(C), front passenger’s left pant pocket (D), front passenger’s
right pant pocket (E), left rear passenger’s left pocket, left
rear passenger’s right pocket (G), right rear passenger’s left
pocket (H) and right rear passengers right pocket (I). When
the phone was in the 5 front positions, there are two cases:
(1) only driver and front passenger were in the car; and (2)
driver, front passenger, and left rear passenger were in the
car. When the phone was located in the rear positions, the
additional rear passenger always occupied the car.

Phone II, Car II : These experiments deploy the iPhone
3G in the Acura, again stationary but this time without
background noise. We use three occupancy variants: only
driver is in the car; driver and co-driver are in the car; driver,
co-driver and one passenger are in the car. (1) There are two
positions tested in the first case: driver door’s handle and
cup holder; (2) four positions in the second case: the same
two positions as before, plus co-driver’s left pant pocket and
co-driver door’s handle; and (3) six positions in the third
case: all four positions from the second case, plus passen-
ger holding the phone at rear left seat and rear left door’s
handle.

Scenario Threshold DR FPR Accuracy

Two-channel stereo system, phone at front seats
Highway Un-calibrated 99% 4% 97.5%

Calibrated 100% 4% 98%
Phone I, Car I Un-calibrated 94% 3% 95%

Calibrated 98% 7% 96%
Phone II, Car II Un-calibrated 95% 24% 87%

Calibrated 91% 5% 92%

Four-channel stereo system, phone at all seats
Phone I, Car I Un-calibrated 94% 3% 95%

Calibrated 94% 2% 96%
Phone II, Car II Un-calibrated 84% 16% 84%

Calibrated 91% 3% 94%

Table 1: Detection rate (DR), false positive rate
(FPR) and accuracy when determining the driver
phone use under various scenarios.

Highway Driving : ADP2 is deployed in Car I. The car
is driving on highway at the speed of 60MPH with music
playing in the car. The four positions tested are: driver’s
left pant pocket, cup holder, co-driver holding the phone,
and co-driver’s right pant pocket. We also repeat this set of
experiments with both front windows open, as a worst case
background noise scenario.

Metrics. One of our key evaluation questions is how
accurately our technique distinguishes phones that likely are
used by the driver from phones likely used by passengers.
In this evaluation, we consider all phones in positions that
are within easy reach of the driver as phones used by the
driver. This includes the driver’s left and right pockets, the
driver door’s handle, and the cup holder. We have marked
this as the driver’s control area in Fig. 6. We consider all
other positions passenger phone positions. To evaluate the
performance of our system, we therefore define the following
metrics:

Classification Accuracy (Accuracy). Classification accu-
racy is defined as the percentage of the trials that were cor-
rectly classified as driver phone use or correctly classified as
passenger phone use.

Detection Rate (DR), False Positive Rate (FPR). Detec-
tion rate is defined as the percentage of trials within the
driver control area that are classified as driver phone use.
False positive rate is defined as the percentage of passenger
phone use that are classified as driver phone use.

Measurement Error. Measurement error is defined as the
difference between the measured distance difference (i.e.,
∆dij) and the true distance difference. This metric directly
evaluates the performance of relative ranging in our algo-
rithm.

5.2 Classification of Driver Phone Use

5.2.1 Driver vs. Passenger Phone Use

Table 1 shows the detection rate, false positive rate and
accuracy when determining driver phone use using the two
channel stereo system. Note that since the 2-channel sys-
tem cannot distinguish the driver-side passenger seat from
the driver seat, we have only tested front phone positions
for this experiment. To test the robustness of our system
to different types of cars, we distinguish between the Un-
calibrated system, which uses a default threshold, and the
Calibrated system, wherein the threshold is determined by
taking into the consideration of car’s dimensions and speaker
layout.



We set the Un-calibrated default threshold THlr = −5cm
for both Car I and Car II. We shift the THlr from 0cm to
-5cm, because we define the cup holder position within the
driver’s control area. Recall, that the cup holder is equidis-
tant from both speakers and results in distance difference
near zero. For Calibrated threshold, it is THlr = −7cm and
THlr = −2cm in Car I and Car II settings respectively.

Two-channel stereo system. From Table 1, the impor-
tant observation in the Highway scenario is that our system
can achieve close to 100% detection rate (with a 4% false
positive rate), which results in about 98% accuracy, suggest-
ing our system is highly effective in detecting driver phone
use while driving. The detection rate for both Un-calibrated
and Calibrated is more than 90% while the false positive
rate is around 5% except for Car II setting. This indicates
the effectiveness of our detection algorithm. The high false
positive rate of Car II setting can be reduced through cal-
ibration of the threshold. Although the detection rate is
reduced when reducing the false positive rate for Car II, the
overall detection accuracy is improved. These results show
that our system is robust to different types of cars and can
provide reasonable accuracy without calibration (although
calibration still helps).

Recall that in this experiment we only considered front
phone positions since the two-channel stereo system can
only distinguish between driver-side and passenger-side po-
sitions. With phone positions on the back seats, particularly
the driver-side rear passenger seat, the detection accuracy
will be degraded, although the detection rate remains the
same. Real life accuracy will depend on where drivers place
their phones in the car and how often passengers use their
phone from other seats. Unfortunately, we were unable to
gather this information. We did however find information
on passenger seat occupancy in the FARS 2009 database [7].
Encouragingly it shows that the two front seats are the most
frequently occupied seats. In particular, according to FARS
2009 database, 83.5% of vehicles are only occupied by driver
and possibly one front passenger, whereas only about 16.5%
of trips occur with back seat passengers. More specifically,
only 8.7% of the trips include a passenger sitting behind
driver seat–the situation that would increase our false posi-
tive rate.

If we weigh the phone locations by these probabilities, the
false positive rate only increases to about 20% even with
the two channel system. The overall accuracy of detecting
driver phone use remains at about 90% for all three experi-
mental scenarios in our system. This is very encouraging as
it indicates our system can successfully produce high detec-
tion accuracy even with the systems limited to two-channel
stereo in today’s cars.

Four-channel stereo system. We now consider the
four-channel system to study how accuracy could be im-
proved when surround sound is available. The results of us-
ing four-channel system under both Un-calibrated and Cal-
ibrated thresholds is shown in Tables 1. The un-calibrated
thresholds are THfb = 0cm and THlr = −5cm for both Car
I and Car II. The calibrated thresholds are THfb = 15cm
and THlr = −5cm for Car I, whereas they are THfb =
−24cm and THlr = −2cm for Car II. We found that with
the calibrated thresholds, the detection rate is above 90%
and the accuracy is around 95% for both settings. This
shows that the four-channel system can improve the de-
tection performance, compared to that of the two-channel
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Figure 7: Accuracy of detecting driver phone use at
each position in Car I (i.e., positions plotted in Fig-
ure 6) under calibrated thresholds with four-channel
stereo system.

stereo system. In addition, the performance under un-calibrated
thresholds is similar to that under calibrated thresholds for
Car I setting, however, it is much worse than that of cali-
brated thresholds for Car II settings. This suggests that cal-
ibration is more important for distinguishing the rear area,
because the seat locations vary more in the front-back di-
mension across cars (and due to manual seat adjustment).

5.2.2 Position Accuracy and Seat Classification

We next evaluate our algorithm accuracy at different po-
sitions and seats within the car. Figure 7 shows the ac-
curacy of detecting driver phone use for different positions
in Car I setting under calibrated thresholds. We observed
that we can correctly classify all the trials at the positions
A,B,E,G,H,I as denoted in Figure 6, whereas the detection
accuracy decreases to 93% for position D (i.e., co-driver’s left
pocket) and 82% for position C (i.e., cup holder). Addition-
ally, we tested doors’ handle positions in Car II setting and
found the accuracy for driver’s door handle is 99%, and 97%
for co-driver’s door handle. These results provide a better
understanding of our algorithm’s performance at different
positions in car.

We further derive seat classification results. Table 2 shows
the accuracy when determining the phone at each seat un-
der Un-calibrated and Calibrated thresholds using the four-
channel stereo system. We found that the accuracy of the
back seats is much higher than that of front seats. Because
there is a cup holder position tested in the front. It is hard
to classify the cup holder and co-driver’s left position since
they are physically close to each other.

5.2.3 Left vs. Right Classification

Figure 8 illustrates the boxplot of the measured ∆d12 at

Driver Co-driver Rear Left Rear Right

Phone I, Car I
Un-calibrated 95% 95% 99% 99%
Calibrated 96% 95% 99% 99%
Phone II, Car II
Un-calibrated 84% 88% 94% N/A
Calibrated 94% 94% 98% N/A

Table 2: Accuracy of determining the phone at each
seat with four-channel stereo system.
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Figure 8: Boxplot of the measured ∆d12 for all front
positions in two-channel stereo system.

different tested positions. On each box, the central mark
is the median, the edges of the box are the 25th and 75th
percentiles, the whiskers extend to the most extreme data
points. We note that the scale of y-axis in Figure 8 (a) is dif-
ferent from that in Figure 8 (b). We found that these boxes
are clearly separated from each other showing that we ob-
tained different relative ranging values at different positions.
And these positions can be perfectly identified by examining
the measured values from relative ranging except Cup holder
and Co-driver’s left positions for both Car I and Car II set-
tings. By comparing Figure 8 (a) and (b), we found that
the relative ranging results of driver’s and co-driver’s doors
are much smaller than that of driver’s left and co-driver’s
right pockets, which is conflict with the groundtruth. This
is mainly because the shortest path that the signal travels
to reach the phone is significantly longer than the actual
distance between the phone and the nearby speaker when
putting the phone at door’s handle since there is no direct
path between the phone and speaker, i.e., the nearby speaker
is facing the opposite side of the phone.

To compare the stability of our ranging results under the
Highway driving scenario to the stationary one, we plotted
the standard deviation of relative ranging results at different
positions in Figure 9. We observed the encouraging results
that our algorithm produces the similar stability of detection
when car is driving on highway to that when car is parked.
We note that at the co-driver’s right position (i.e., Co-driver-
R), the relative ranging results of Highway driving scenario
still achieves 7cm of standard deviation, although it is not as
stable as that of Phone I Car I setting due to the movement
of the co-driver’s body caused by moving car.

5.2.4 Front vs. Back Classification
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Figure 9: Stability study of relative ranging between
highway driving and stationary scenarios.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.88

0.9

0.92

0.94

0.96

0.98

1

False Positive Rate

D
e
te

c
ti

o
n

 R
a
te

 

51

37

29

15 5 4 3 1 04.5

Figure 10: ROC curve of detecting the phone at
front seats for Phone I, Car I scenario.

In front and back classification, the detection rate is de-
fined as the percentage of the trials on front seats that are
classified as front seats. False positive rate is defined as
the percentage of back seat trials that are classified as front
seats. Figure 10 plotted Receiver Operating Curve (ROC)
of detecting the phone at front seats in Car I setting. We
found that our system achieved over 98% detection rate with
less than 2% false positive rate. These results demonstrate
that it is relatively easier to classify front and back seats
than that of left and right seats since the distance between
the front and back seats is relatively larger. Our algorithm
can perfectly classify front seats and back seats with only a
few exceptions.

5.3 Results of Relative Ranging
We next present the measurement error of our relative

ranging mechanism and compare it to the previous work
using chirp signal and correlation signal detection method
with multipath mitigation mechanism, which achieved high
accuracy for acoustic ranging using off-the-shelf mobile de-
vices [31].

Correlation-Based Method. To be resistant to am-
bient noise, the correlation method uses the chirp signal as
beep sound. To perform signal detection, this method corre-
lates the chirp sound with the recorded signal using L2-norm
cross-correlation, and picks the time point when the corre-
lation value is the maximum as the time signal detected. To
mitigate the multipath, instead of using the maximum corre-
lation value, the earliest sharp peak in the correlation values
is suggested as the signal detected time [31]. We refer this
approach as correlation method with mitigation mechanism.

Strategy for Comparison. To investigate the effect
of multipath in an enclosed in-car environment and the re-
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(b) Correlation method

Figure 11: Measurement error of relative ranging.

sistance of beep signals to background noise, we designed
experiments by putting ADP2 in car I at three different po-
sitions with line-of-sight (LoS) to two front speakers. At
each position, we calculated 32 measurement errors to ob-
tain a statistical result. To evaluate multipath effects, we
simply measured the TDOA values of our method and cor-
relation method with mitigation mechanism. To test the
robustness under background noise, we played music in car
at different sound pressure levels, which are 60dB and 80dB,
representing moderate noise (e.g., people talking in car) and
heavy noise (e.g., traffic on a busy road), respectively. The
chirp sound used for correlation method is taken from pre-
vious work [31], which is a 50 millisecond length of 2-6kHz
linear chirp signal at 80dB SPL and is proven to be a good
compromise between multipath effects suppressing and noise
resistance.

5.3.1 Impact of Multipath

Figure 11 shows the histogram of measurement error in car
for both our method and correlation method with multipath
mitigation mechanism. We observed that all the measure-
ment errors of our method are within 2cm, whereas more
than 30% of the measurement errors of correlation-based
method are larger than 2cm. Specifically, by examining
the zoomed in histogram in Figure 11(a), we found that
our method has most of the cases with measurement errors
within 1cm (i.e., 1 sample), whereas about 30% cases at
around 8cm (i.e., 10 samples) for correlation-based method.
The results show that our algorithm outperforms the correlation-
based method in mitigating multipath effect in an in-car
environment since our signal detection method detects the
first arriving signal, not affected by the subsequent arriving
signal through different paths.
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Figure 12: Impact of background noise.

5.3.2 Impact of Background Noise

Figure 12 analyzes the impact of background noise. Fig-
ure 12(a) illustrates the comparison of successful ratio de-
fined as the percentage of measurement errors within 10cm
for two methods. Our method successfully achieves within
10cm measurement error for all the trials under both moder-
ate and heavy noises, whereas the correlation-based method
with multipath mitigation scheme achieves 85% for moder-
ate noise and 60% for heavy noise over all the trials, re-
spectively. Figure 12(b) shows the measurement error CDF
of our method. The median error of our method is only
0.66cm under moderate noise and it is 1.05cm under heavy
noise. We also tested both methods in a room environment
(with people chatting at the background) using computer
speakers, and found both methods exhibit comparable per-
formance.

5.4 Computational Complexity
Our algorithm complexity is bounded by the length of

the audio signal needed for analysis. In order to keep the
resolution at one sample and perform noise filtering, we ex-
tract the energy within each m samples moving window at
the targeted frequency band (i.e., 16-18kHz for ADP2 and
18-20kHz for iPhone) using a short-time Fourier transform
(STFT). Given n recorded samples and a moving window
size m, the computational cost for energy extraction at the
targeted frequency band is O(nm log m). In our implemen-
tation , we set the window size as 32 samples. After filtering,
the computational cost of signal detection is O(n).

Run Time. Since the STFT is the most expensive pro-
cessing step, our implementation limits processing to a 1000
sample window that the beep signal is estimated to fall into
(it is chosen wide enough for worst-case propagation delays



in the car environment). We then detect the exact time
point of the first arriving signal within these 1000 samples.
Once the time point of the first arriving signal is determined,
our algorithm shifts the precessing window to the next beep
sound since we know the fixed interval between two adja-
cent beeps. Thus, the computational time for one beep is
approximately equivalent to process 1000 samples. We im-
plemented this step on the ADP2 with JTransforms library
for STFT and measured the average processing time of our
detection algorithm as about 0.5 second for the two-channel
system and about 1 second for the four-channel system.
The windowing implementation has significantly reduced the
processing time of our algorithm and further optimizations
are likely possible.

6. DISCUSSION
Bluetooth issues. We have assumed that a Bluetooth

connection is already established. We believe that this is
a reasonable assumption for people who (usually) drive a
given car. People are likely to pair their phone with the in-
car Bluetooth system and after the first pairing, connections
are usually automatically established when the phone comes
in range of the car. It is not common practice, however, for
occasional passengers who are never drivers. There seem to
be several possible approaches to address this issue: (i) hav-
ing phones listen for beeps transmitted by other phones at
regular known times, (ii) standardizing a Bluetooth profile
for such beep transmission which allows auto-pairing, (iii)
building the beep transmissions into car audio systems, so
that phones only need to listen. The Bluetooth connection
could also be in use for playing music using the A2DP pro-
file. In this case, the phone should be able to insert the
beeps into the music stream.

Limitations. Even with access to four audio channels,
the system might not accurately distinguish driver and pas-
senger for several reasons. First, if the phone is placed un-
der a heavy winter coat or inside a full bag, the beep sounds
might be too muffled to be accurately detected. Second, if
the driver places the phone on an empty passenger seat, the
system might correctly detect the seat, but an incoming call
could still distract the driver. Still, we believe the accuracy
of this system will be a significant improvement over current
systems that only seek to determine whether the phone is
used inside a vehicle. We have also left buses, trains, and
other vehicles outside the scope of this work—phones could
identify such vehicles by comparing GPS traces with known
routes. In these vehicles it is also more cost-efficient to add a
device to the driver cabin. A more fundamental limitation is
the probabilistic nature of our approach. We can not place
hard boundaries on accuracy because of many environmental
unknowns, some of which are described above. This means
that our approach is less suitable for applications depending
on perfect accuracy. Rather, they will serve to enhance the
user experience and nudge drivers towards safer behavior.
Finally, Finally, this system is not intended for continuously
tracking phone position, since its energy consumption would
be quite substantial. Rather, we envision that this technique
would be sporadically triggered, for example, by an incom-
ing phone call or when entering the vehicle (upon Bluetooth
connect).

Applications. In this paper, we have concentrated only
on distinguishing drivers and passengers, a complete system
should also include cellphone-based speed detection tech-

niques to determine whether the car is driving. As alluded
to in the introduction, there are several applications of this
driver phone use detection system: (i) it could automatically
bring up less distracting driver user interfaces; (ii) the beeps
might only be transmitted when a call or text is coming in,
to determine whether the phone should ring or whether the
call should go to voicemail; (iii) the ’driving’ status might be
displayed in friends dialer applications to discourage them
from calling. Integration with vehicle controls, is another
dimension that could be explored. Perhaps a driver chat-
ting on the phone should increase the responsiveness of a
vehicle’s braking system, since this driver is more likely to
break late. It could also affect the level of intrusiveness of
lane-departure warning and other driver assist systems. Fi-
nally, the information could be used to lock the phone to
prevent the driver from calling—we note, however, that the
system is not secure against a user intentionally trying to
fool it. Thus, it is less suitable for such enforcement actions.

7. CONCLUSIONS
We developed a driver mobile phone use detection sys-

tem that requires only software changes on smartphones. It
achieves this by leveraging the existing infrastructure of car
speakers for ranging via Bluetooth. The proposed system
detects driver phone use by estimating the range between
the phone and car’s speakers. To estimate range, we devel-
oped an acoustic based relative ranging technique in which
the phone plays and records a specially designed acoustic sig-
nal through car’s speakers. Our specially designed acoustic
signal is unobtrusive as well as robust to background noise
when driving. Our algorithm achieves high accuracy un-
der heavy multipath in-car environments by using sequential
change-point detection to identify the first arriving signal.

We further demonstrated the viability of distinguishing
between driver’s and passenger’s phone use working within
the confines of the existing handsfree audio infrastructure.
Our prototype showed the generality of our approach, as we
applied it to two different phone types and two different cars
under various scenarios. Our system can achieve over 90%
of detection rates as well as accuracy, with low false positive
rate.
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